jieba gensim 之最简单的相似度实现

 

简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能中的另一项技术:

自然语言处理(NLP) : 大概意思就是 让计算机明白一句话要表达的意思,NLP就相当于计算机在思考你说的话,让计算机知道"你是谁","你叫啥","你叫什么名字"是一个意思

这就要做 : 语义相似度

接下来我们用Python大法来实现一个简单的自然语言处理

现在又要用到Python强大的三方库了

第一个是将汉字转换为拼音的库叫 pypinyin

pip3 install pypinyin

# 注:对于汉字使用 TONE2 更方便
from pypinyin import lazy_pinyin,TONE,TONE2,TONE3

res = lazy_pinyin("你好",style=TONE)
print(res)  # ['nǐ', 'hǎo']
print("".join(res))  # nǐhǎo

res = lazy_pinyin("你好",style=TONE2)
print(res)  # ['ni3', 'ha3o']
print("".join(res))  # ni3ha3o

res = lazy_pinyin("你好",style=TONE3)
print(res)  # ['ni3', 'hao3']
print("".join(res))  # ni3hao3
pypinyin的简单使用 示例

 

第二个是将中文字符串进行分词的库叫 jieba

pip3 install jieba

# 注意:jieba很耗时

import jieba

# jieba.add_word("挂了")
# jieba.add_word("到一")  # 不规范的词加上也不管用

# res = jieba.cut("太上皇打天下到一半儿挂了")
# print(res)  # 结果是个生成器
# res_list = list(res)
# print(res_list)  # ['太上皇', '打天下', '到', '一半儿', '挂了']

# res = jieba.cut_for_search("太上皇打天下到一半儿挂了")
# print(res)  # 结果是个生成器
# res_list = list(res)
# print(res_list)  # ['太上','太上皇','天下','打天下','到','一半','半儿', '一半儿', '挂了']
jieba 的简单使用 示例

我们通常把这个库叫做 结巴分词 确实是结巴分词,而且这个词库是 made in china , 基本用一下这个结巴分词:

import jieba

key_word = "你叫什么名字"  # 定义一句话,基于这句话进行分词

cut_word = jieba.cut(key_word)  # 使用结巴分词中的cut方法对"你叫什么名字" 进行分词

print(cut_word)  # <generator object Tokenizer.cut at 0x03676390> 不懂生成器的话,就忽略这里

cut_word_list = list(cut_word)  # 如果不明白生成器的话,这里要记得把生成器对象做成列表

print(cut_word_list)  # ['你', '叫', '什么', '名字']

测试代码就很明显了,它很清晰的把咱们的中文字符串转为列表存储起来了

 

第三个是一个语言训练库叫 gensim

pip3 install gensim

这个训练库很厉害, 里面封装很多机器学习的算法, 是目前人工智能的主流应用库,这个不是很好理解, 需要一定的Python数据处理的功底

import jieba
import gensim
from gensim import corpora
from gensim import models
from gensim import similarities

l1 = ["你的名字是什么", "你今年几岁了", "你有多高你胸多大", "你胸多大"]
a = "你今年多大了"

all_doc_list = []
for doc in l1:
    doc_list = [word for word in jieba.cut(doc)]
    all_doc_list.append(doc_list)

print(all_doc_list)
doc_test_list = [word for word in jieba.cut(a)]

# 制作语料库
dictionary = corpora.Dictionary(all_doc_list)  # 制作词袋
# 词袋的理解
# 词袋就是将很多很多的词,进行排列形成一个 词(key) 与一个 标志位(value) 的字典
# 例如: {'什么': 0, '你': 1, '名字': 2, '是': 3, '的': 4, '了': 5, '今年': 6, '几岁': 7, '多': 8, '有': 9, '胸多大': 10, '高': 11}
# 至于它是做什么用的,带着问题往下看

print("token2id", dictionary.token2id)
print("dictionary", dictionary, type(dictionary))

corpus = [dictionary.doc2bow(doc) for doc in all_doc_list]
# 语料库:
# 这里是将all_doc_list 中的每一个列表中的词语 与 dictionary 中的Key进行匹配
# 得到一个匹配后的结果,例如['你', '今年', '几岁', '了']
# 就可以得到 [(1, 1), (5, 1), (6, 1), (7, 1)]
# 1代表的的是 你 1代表出现一次, 5代表的是 了  1代表出现了一次, 以此类推 6 = 今年 , 7 = 几岁
print("corpus", corpus, type(corpus))

# 将需要寻找相似度的分词列表 做成 语料库 doc_test_vec
doc_test_vec = dictionary.doc2bow(doc_test_list)
print("doc_test_vec", doc_test_vec, type(doc_test_vec))

# 将corpus语料库(初识语料库) 使用Lsi模型进行训练
lsi = models.LsiModel(corpus)
# 这里的只是需要学习Lsi模型来了解的,这里不做阐述
print("lsi", lsi, type(lsi))
# 语料库corpus的训练结果
print("lsi[corpus]", lsi[corpus])
# 获得语料库doc_test_vec 在 语料库corpus的训练结果 中的 向量表示
print("lsi[doc_test_vec]", lsi[doc_test_vec])

# 文本相似度
# 稀疏矩阵相似度 将 主 语料库corpus的训练结果 作为初始值
index = similarities.SparseMatrixSimilarity(lsi[corpus], num_features=len(dictionary.keys()))
print("index", index, type(index))

# 将 语料库doc_test_vec 在 语料库corpus的训练结果 中的 向量表示 与 语料库corpus的 向量表示 做矩阵相似度计算
sim = index[lsi[doc_test_vec]]

print("sim", sim, type(sim))

# 对下标和相似度结果进行一个排序,拿出相似度最高的结果
# cc = sorted(enumerate(sim), key=lambda item: item[1],reverse=True)
cc = sorted(enumerate(sim), key=lambda item: -item[1])
print(cc)

text = l1[cc[0][0]]

print(a,text)
View Code

 

posted on 2019-12-21 17:07  始终不够啊  阅读(294)  评论(0编辑  收藏  举报