摘要: 结论 已知椭圆 \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1(a>b>0)\) ,若直线 \(l\) 与椭圆相交于 \(A,B\) 两点,\(M\) 为 \(AB\) 中点,则 \(k_{OM}k_{AB}=-\dfrac{b^2}{a^2}\) . 证明 设 \(A( 阅读全文
posted @ 2020-01-29 19:45 LB_yifeng 阅读(2816) 评论(0) 推荐(0) 编辑
摘要: 等边三角形 \(ABC\) 中,点 \(D,E\) 分别在边 \(BC,AC\) 上,且 \(|BD|=\dfrac{1}{3}|BC|,|CE|=\dfrac{1}{3}|CA|,AD,BE\) 相交于点 \(P\) . 求证: \(AP\perp CP\) . 解法一 如图,以 \(BC\) 边 阅读全文
posted @ 2020-01-28 19:39 LB_yifeng 阅读(1586) 评论(0) 推荐(0) 编辑
摘要: [题目] 如图,正方形 \(ABCD\) 的边长为 $1$ ,\(P,Q\) 分别为边 \(AB,DA\) 上的点.当 \(\triangle APQ\) 的周长为 $2$ 时,求 \(\angle PCQ\) 的大小. [解析] 设 \(\angle DCQ=\alpha , \angle BCP 阅读全文
posted @ 2020-01-24 10:33 LB_yifeng 阅读(451) 评论(0) 推荐(0) 编辑
摘要: 一、求证:\(\sin\alpha\cos\beta=\dfrac{1}{2}[\sin(\alpha+\beta)+\sin(\alpha-\beta)]\) 证明:因为$$\sin(\alpha+\beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta$$$$ 阅读全文
posted @ 2020-01-23 12:44 LB_yifeng 阅读(4567) 评论(0) 推荐(0) 编辑
摘要: $1 .\quad$已知 \(a\in R\) .设函数 \(f(x)=\begin{cases}x^2-2ax+2a , x\leq1 \\ x-a\ln x , x>1\end{cases}\quad\) ,若关于 \(x\) 的不等式 \(f(x)\geq0\) 在 \(\rm R\) 上恒成 阅读全文
posted @ 2020-01-22 15:38 LB_yifeng 阅读(405) 评论(0) 推荐(0) 编辑
摘要: ####[教材出处] 已知点 \(M\) 与两个定点 \(O(0,0),A(3,0)\) 的距离的比为 \(\dfrac{1}{2}\),求点 \(M\) 的轨迹方程. ####解析 设 \(M(x,y)\),依题意有 \(\dfrac{MO}{MA}=\dfrac{1}{2}\),即: \(\df 阅读全文
posted @ 2020-01-21 21:55 LB_yifeng 阅读(2144) 评论(0) 推荐(0) 编辑
摘要: 一、填空题(本题满分70分,每小题7分) 已知$A\cup B=${\(a_1,a_2,a_3\)},当$A\neq B$ 时,\((A,B)\) 与 \((B,A)\) 视为不同的对,则这样的$(A,B)$ 对的个数是$(\qquad)$. 若不等式$\sqrt>ax+\dfrac{3}{2}$ 阅读全文
posted @ 2020-01-21 17:14 LB_yifeng 阅读(380) 评论(0) 推荐(0) 编辑
摘要: [题目] 如图,等边 $△ABC$ 的边长为 $2$ ,顶点 $B,C$ 分别在 $x$ 轴的非负半轴,$y$ 轴的非负半轴上滑动,$M$ 为 $AB$ 中点,则 $\overrightarrow{OA}\cdot\overrightarrow{OM}$ 的最大值为 $(\qquad)$ $A.\s 阅读全文
posted @ 2018-10-25 17:55 LB_yifeng 阅读(242) 评论(0) 推荐(0) 编辑