bzoj1076[SCOI2008]奖励关
传送门
Description
你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,
每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。
宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1次系统都抛出宝物1(
这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n。 获取第i种宝物将得到Pi
分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过
一次,才能吃第i种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi可
以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。 假设你
采取最优策略,平均情况你一共能在奖励关得到多少分值?
Input
第一行为两个正整数k和n,即宝物的数量和种类。以下n行分别描述一种宝物,其中第一个整数代表分值,随
后的整数依次代表该宝物的各个前提宝物(各宝物编号为1到n),以0结尾。
Output
输出一个实数,保留六位小数,即在最优策略下平均情况的得分。
Sample Input
1 0
2 0
Sample Output
HINT
【数据规模】
1<=k<=100,1<=n<=15,分值为[-10^6,10^6]内的整数。
题解
我们看到n<=15,考虑采用状压标记是否捡过。考虑定义f[i][j]表示当前丢的是第i个宝箱,当前状态为j的最优得分。则这一步的期望=(上一步的期望+这一步的得分)/n。我们发现如果顺推,不好判断上一步的状态是否有效,则有可能从无效状态推到有效状态。因此我们考虑倒推,从下一步的有效状态推到上一步的有效状态。所以我们可以写出方程f[i][j]=f[i][j]+max(f[i+1][j],f[i+1][j|(1<<(l-1))])(j状态满足第l个宝箱的所有先决条件),否则f[i][j]=f[i][j]+f[i+1][j]。将l从1枚举到n后我们应该要使得f[i][j]=f[i][j]/k。最后f[1][0]即为正确答案。
代码
1 #include<cstdio> 2 #include<iostream> 3 #include<cstring> 4 #include<cstdlib> 5 #include<algorithm> 6 #include<cmath> 7 using namespace std; 8 int k,n; 9 int p[20],s[20],v[20]; 10 double dp[110][70010]; 11 int main(){ 12 scanf("%d%d",&k,&n); 13 int i,j,l; 14 for(i=1;i<=16;++i) p[i]=1<<(i-1); 15 for(i=1;i<=n;++i){ 16 int x; 17 scanf("%d%d",&v[i],&x); 18 while(x){ 19 s[i]=s[i]|p[x]; 20 scanf("%d",&x); 21 } 22 } 23 for(i=k;i>0;--i){ 24 for(j=0;j<=p[n+1]-1;++j){ 25 for(l=1;l<=n;++l){ 26 if((s[l]&j)==s[l]){ 27 dp[i][j]+=max(dp[i+1][j],dp[i+1][j|p[l]]+v[l]); 28 } 29 else dp[i][j]+=dp[i+1][j]; 30 } 31 dp[i][j]=dp[i][j]/n; 32 } 33 } 34 printf("%.6lf\n",dp[1][0]); 35 return 0; 36 }
,不好判断上一步的状态是否有效