KMP算法解题模板(更新)
/*
kmp算法的主要作用在于对next数组的运用,所以这里只给出next数组的模板
性质1:对于每一个长度len的子串,该子串的最小循环节为len-next[len]
性质2:kmp的next不断向前递归的过程可以保证对于每一个当前前缀,都有一段后缀与之对应
*/
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 1e6+5;
int Next[maxn];
char mo[maxn];
int n2;
void GetNext() {
int i = 0, j = -1;
while (i < n2) {
if(j == -1 || mo[i] == mo[j]) {
i++;
j++;
Next[i] = j;
} else j = Next[j];
}
return;
}
int main() {
cin >> mo;
n2 = strlen(mo);
Next[0] = -1;
GetNext();
return 0;
}
/*
kmp模板
题意就是求B串在A串中的第一次匹配的下标,(从1开始)
str就是A,mo就是B
*/
#include<bits/stdc++.h>
using namespace std ;
const int maxn = 1e6+5;
int Next[maxn], n1, n2;
char str[maxn], mo[maxn];
void GetNext() {
int i = 0, j = -1;
while(i < n2) {
if(j == -1 || mo[i] == mo[j]) {
i++;
j++;
Next[i] = j;
} else j = Next[j];
}
return;
}
int kmp() {
int cnt = 0;
int i = 0, j = 0;
while(i < n1) {
if(j == -1 || str[i] == mo[j]) {
i++;
j++;
} else j = Next[j]; //next数组寻找与当前后缀匹配最长的前缀,省略不必要的查找
if(j == n2) return i - n2 + 1; //首地址
}
return -1;
}
int main() {
cin >> str >> mo;
n1 = strlen(str);
n2 = strlen(mo);
Next[0] = -1;
GetNext();
cout << kmp() << endl;
return 0;
}
/*
kmp模板
题意就是求B串在A串中的出现次数(可重叠
str就是S,mo就是B
*/
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e6+5;
int Next[maxn], n1, n2;
char str[maxn], mo[maxn];
void GetNext() {
int i = 0, j = -1;
while(i < n2) {
if(j == -1 || mo[i] == mo[j]) {
i++;
j++;
Next[i] = j;
} else j = Next[j];
}
return;
}
int kmp() {
int cnt = 0;
int i = 0, j = 0;
while(i < n1) {
if (j == -1 || str[i] == mo[j]) {
i++;
j++;
} else j = Next[j];
if(j == n2) {
cnt++;
j=Next[j]; //完成一次匹配,将j移动到最长的前缀处,省略不必要的查找
}
}
return cnt;
}
int main() {
cin >> str >> mo;
n1 = strlen(str);
n2 = strlen(mo);
Next[0] = -1;
GetNext();
cout << kmp() << endl;
return 0;
}
/*
kmp模板
题意就是求B串在A串中的出现次数(不可重叠
str就是A,mo就是B
*/
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e6+5;
int Next[maxn], n1, n2;
char str[maxn], mo[maxn];
void GetNext() {
int i = 0, j = -1;
while (i < n2) {
if (j == -1 || mo[i] == mo[j]) {
i++;
j++;
Next[i] = j;
} else j = Next[j];
}
return;
}
int kmp() {
int cnt = 0;
int i = 0, j = 0;
while (i < n1) {
if (j == -1 || str[i] == mo[j]) {
i++;
j++;
} else j = Next[j];
if (j == n2) {
cnt++;
j = 0;
}
}
return cnt;
}
int main() {
cin >> str >> mo;
n1 = strlen(str);
n2 = strlen(mo);
Next[0] = -1;
GetNext();
cout << kmp() << endl;
return 0;
}
/*
最小循环节 POJ 2406 Power Strings
结论:如果len%(len-nxt[len])=0,那么循环次数为len/(len-nxt[len]),否则为1
*/
#include <cstdio>
#include <cstring>
using namespace std;
char s[1000100];
int nxt[1000100];
void get_nxt(){
int len = strlen(s);
nxt[0] = -1;
int i = 0, j = -1;
while (i < len){
if (j == -1 || s[i] == s[j]){
i++, j++;
nxt[i] = j;
}
else j = nxt[j];
}
}
int main(){
//freopen("in.txt", "r", stdin);
while (scanf("%s", s)){
int len = strlen(s);
if (len == 1 && s[0] == '.')break;
get_nxt();
int ans = len % (len - nxt[len]) == 0 ? len / (len - nxt[len]) : 1;
printf("%d\n", ans);
}
return 0;
}