前提
神经网络中有合适的权重和偏置,调整权重和偏置以便拟合训练数据的过程称为学习。神经网络的学习分为下面4 个步骤。
步骤1(mini-batch) 从训练数据中随机选择一部分数据。步骤2(计算梯度) 计算损失函数关于各个权重参数的梯度。步骤3(更新参数) 将权重参数沿梯度方向进行微小的更新。步骤4(重复) 重复步骤1、步骤2、步骤3。