PyTorch之分布式操作Barrier
PyTorch之分布式操作Barrier
原始文档:https://www.yuque.com/lart/ugkv9f/gy7sva
关于 barrier 的概念
关于 barrier 这个概念可以参考 Wiki 中的介绍:同步屏障(Barrier)是并行计算中的一种同步方法。对于一群进程或线程,程序中的一个同步屏障意味着任何线程/进程执行到此后必须等待,直到所有线程/进程都到达此点才可继续执行下文。
这里要注意,barrier 这一方法并不是 pytorch 独有的,这是并行计算中的一个基本概念,其他的并行计算的场景下也可能会涉及这一概念和操作。本文主要讨论 pytorch 中的情况。
torch.distributed.barrier(group=None, async_op=False, device_ids=None)
Synchronizes all processes.
This collective blocks processes until the whole group enters this function, if async_op is False, or if async work handle is called on wait().
Parameters
group (ProcessGroup, optional) – The process group to work on. If None, the default process group will be used.
async_op (bool, optional) – Whether this op should be an async op
device_ids ([int], optional) – List of device/GPU ids. Valid only for NCCL backend.
Returns
Async work handle, if async_op is set to True. None, if not async_op or if not part of the group
在多卡训练的时候,由于不同的 GPU 往往被设定在不同的进程中,有时候为了在单独的进程中执行一些任务,但是又同时希望限制其他进程的执行进度,就有了使用barrier
的需求。
一个实际的场景是准备数据集:我们只需要在 0 号进程处理,其他进程没必要也执行这一任务,但是其他进程的后续工作却依赖准备好的数据。于是就需要在 0 号进程执行过程中阻塞其他的进程,使其进入等待状态。等到处理好之后,再一起放行。
这种需求下,一个典型的基于上下文管理器形式的构造如下:
# https://github.com/ultralytics/yolov5/blob/7d56d451241e94cd9dbe4fcb9bfba0e92c6e0e23/utils/torch_utils.py#L29-L38
@contextmanager
def torch_distributed_zero_first(local_rank: int):
"""
Decorator to make all processes in distributed training
wait for each local_master to do something.
"""
if local_rank not in [-1, 0]:
dist.barrier(device_ids=[local_rank])
yield
if local_rank == 0:
dist.barrier(device_ids=[0])
关于 barrier 的细节
# -*- coding: utf-8 -*-
import os
import time
import torch.distributed as dist
import torch.multiprocessing as mp
def ddp_test_v0(local_rank, word_size):
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
dist.init_process_group(backend="nccl", world_size=word_size, rank=local_rank)
print("first before barrier{}\n".format(local_rank))
if local_rank != 0:
dist.barrier()
print("first after barrier{}\n".format(local_rank))
print("inter {}".format(local_rank))
print("second before barrier{}\n".format(local_rank))
if local_rank == 0:
dist.barrier()
print("second after barrier{}\n".format(local_rank))
print("{} exit".format(local_rank))
def ddp_test_v1(local_rank, word_size):
# Initializes the distributed backend which will take care of synchronizing nodes/GPUs
dist.init_process_group(backend="nccl", world_size=word_size, rank=local_rank)
if local_rank != 0:
print("1 before barrier{}\n".format(local_rank))
start = time.time()
time.sleep(5)
dist.barrier()
print(time.time() - start)
print("1 after barrier{}\n".format(local_rank))
dist.barrier()
print("1 after barrier{}\n".format(local_rank))
else:
print("0 before barrier{}\n".format(local_rank))
start = time.time()
dist.barrier()
print(time.time() - start)
print("0 after barrier{}\n".format(local_rank))
print("0 after barrier{}\n".format(local_rank))
dist.barrier()
print("0 after barrier{}\n".format(local_rank))
print("{} exit".format(local_rank))
def main():
world_size = 2
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = "29500"
mp.spawn(ddp_test_v0, args=(world_size,), nprocs=world_size, join=True)
if __name__ == "__main__":
main()
这里展示了两个例子,实际上在官方展示的 dist.barrier
之外显示了该方法的一个重要特性,就是其操作实际上是每一个进程内部都需要对应的执行同样的次数,才会对应的由阻塞变为正常运行。
先看第一个例子:
def ddp_test(local_rank, word_size):
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
dist.init_process_group(backend="nccl", world_size=word_size, rank=local_rank)
print("first before barrier{}\n".format(local_rank))
if local_rank != 0:
dist.barrier()
print("first after barrier{}\n".format(local_rank))
print("inter {}".format(local_rank))
print("second before barrier{}\n".format(local_rank))
if local_rank == 0:
dist.barrier()
print("second after barrier{}\n".format(local_rank))
print("{} exit".format(local_rank))
其输出是:
first before barrier1
first before barrier0
first after barrier0
inter 0
second before barrier0
second after barrier0
0 exit
first after barrier1
inter 1
second before barrier1
second after barrier1
1 exit
Process finished with exit code 0
可以看到,有几个细节:
barrier
之前,所有的操作都是各 GPU 进程自己输出自己的。- 由于
local_rank=0
执行到自己可见的barrier
中间会输出多个,而local_rank=1
则只有一条first before barrier1
。
- 由于
second before barrier0
之后,0 号执行到了属于自己的barrier
,这回让使得其他进程不再阻塞,开始正常运行。由于中间操作的时间,所以先是 0 号输出自己的second after barrier0
并随之退出,之后 1 号也接着开始输出自己的结果。
这里有一点值得注意,不同进程的 barrier
实际上是互相对应的,必须所有进程都执行一次barrier
,才会重新放行正常前进。
对于第二段代码:
def ddp_test_v1(local_rank, word_size):
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
dist.init_process_group(backend="nccl", world_size=word_size, rank=local_rank)
if local_rank != 0:
print("1 before barrier{}\n".format(local_rank))
start = time.time()
time.sleep(5)
dist.barrier()
print(time.time() - start)
print("1 after barrier{}\n".format(local_rank))
dist.barrier()
print("1 after barrier{}\n".format(local_rank))
else:
print("0 before barrier{}\n".format(local_rank))
start = time.time()
dist.barrier()
print(time.time() - start)
print("0 after barrier{}\n".format(local_rank))
print("0 after barrier{}\n".format(local_rank))
dist.barrier()
print("0 after barrier{}\n".format(local_rank))
print("{} exit".format(local_rank))
则是有输出:
1 before barrier1
0 before barrier0
5.002117395401001
5.0021262168884281 after barrier1
0 after barrier0
0 after barrier0
0 after barrier0
0 exit
1 after barrier1
1 exit
Process finished with exit code 0
可以看到一个重要的点,就是这两处 print(time.time() - start)
的输出是基本一样的,不管前面延时多少, barrier
后面的时间都是按照最长到达并执行 barrier
的间隔时间来的。这个更体现了不同进程 barrier
之间的互相限制关系。而 0 到达自己的第二个 barrier
之后,会使得 1 号再次运行。但是此时 0 是先结束的。
另外,可以验证,如果某个编号对应的代码中的两个 barrier
之中的一个,那么另一个就会陷入无限等待之中。
例如:
def ddp_test_v1(local_rank, word_size):
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
dist.init_process_group(backend="nccl", world_size=word_size, rank=local_rank)
if local_rank != 0:
print("1 before barrier{}\n".format(local_rank))
start = time.time()
time.sleep(5)
dist.barrier()
print(time.time() - start)
print("1 after barrier{}\n".format(local_rank))
# dist.barrier()
print("1 after barrier{}\n".format(local_rank))
else:
print("0 before barrier{}\n".format(local_rank))
start = time.time()
time.sleep(3)
dist.barrier()
print(time.time() - start)
print("0 after barrier{}\n".format(local_rank))
print("0 after barrier{}\n".format(local_rank))
dist.barrier()
print("0 after barrier{}\n".format(local_rank))
print("{} exit".format(local_rank))
输出:
0 before barrier0
1 before barrier1
5.002458572387695
1 after barrier1
1 after barrier1
1 exit
5.002473831176758
0 after barrier0
0 after barrier0
Traceback (most recent call last):
File "/home/lart/Coding/SODBetterProj/tools/dist_experiment_test.py", line 67, in <module>
main()
File "/home/lart/Coding/SODBetterProj/tools/dist_experiment_test.py", line 63, in main
mp.spawn(ddp_test_v1, args=(world_size,), nprocs=world_size, join=True)
File "/home/lart/miniconda3/envs/pt17/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 199, in spawn
return start_processes(fn, args, nprocs, join, daemon, start_method='spawn')
File "/home/lart/miniconda3/envs/pt17/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 157, in start_processes
while not context.join():
File "/home/lart/miniconda3/envs/pt17/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 75, in join
ready = multiprocessing.connection.wait(
File "/home/lart/miniconda3/envs/pt17/lib/python3.8/multiprocessing/connection.py", line 931, in wait
ready = selector.select(timeout)
File "/home/lart/miniconda3/envs/pt17/lib/python3.8/selectors.py", line 415, in select
fd_event_list = self._selector.poll(timeout)
KeyboardInterrupt
Process finished with exit code 137 (interrupted by signal 9: SIGKILL)
会在第二个 barrier
处无限等待下去。
这一特点在这个回答中也被提到了:
when a process encounters a barrier it will block the position of the barrier is not important (not all processes have to enter the same if-statement, for instance) a process is blocked by a barrier until all processes have encountered a barrier, upon which the barrier is lifted for all processes
重要的参考资料
- [原创][深度][PyTorch] DDP 系列
- PyTorch 单机多 GPU 训练方法与原理整理
- Pytorch 分布式训练(图示非常友好)
- Distribution is all you need(丰富全面)