caffe神经网络中不同的lr_policy间的区别

lr_policy可以设置为下面这些值,相应的学习率的计算为:

    • - fixed:   保持base_lr不变.
    • - step:    如果设置为step,则还需要设置一个stepsize,  返回 base_lr * gamma ^ (floor(iter / stepsize)),其中iter表示当前的迭代次数
    • - exp:     返回base_lr * gamma ^ iter, iter为当前迭代次数
    • - inv:      如果设置为inv,还需要设置一个power, 返回base_lr * (1 + gamma * iter) ^ (- power)
    • - multistep: 如果设置为multistep,则还需要设置一个stepvalue。这个参数和step很相似,step是均匀等间隔变化,而multistep则是根据stepvalue值变化
    • - poly:     学习率进行多项式误差, 返回 base_lr (1 - iter/max_iter) ^ (power)
    • - sigmoid: 学习率进行sigmod衰减,返回 base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))
posted @ 2019-01-17 14:55  老王哈哈哈  阅读(1845)  评论(0编辑  收藏  举报