算法与数据结构(七):快速排序

在上一篇中,回顾了一下针对选择排序的优化算法——堆排序。堆排序的时间复杂度为O(nlogn),而快速排序的时间复杂度也是O(nlogn)。但是快速排序在同为O(n*logn)的排序算法中,效率也是相对较高的,而且快速排序使用了算法中一个十分经典的思想——分治法;因此掌握快速排序还是很有必要的。

快速排序的基本思想如下:

  1. 在一组无序元素中,找到一个数作为基准数。
  2. 将大于它的数全部移动到它的右侧,小于它的全部移动到右侧。
  3. 在分成的两个区中,再次重复1到2 的步骤,直到所有的数全部有序

下面还是来看一个例子
[3,6,1,2,8,4,7]
首先选取一个基准数,一般选择序列最左侧的数为基准数,也就是3,将小于3的数移动到3的左边,大于3的移动到3的右边,得到如下的序列
[2,1,3,6,8,4,7]
接着针对左侧的[2, 1] 这个序列和 [6, 8, ,4, 7]这两个序列再次执行这种操作,直到所有的数都变为有序为止。

知道了具体的思路下面就是写算法了。

void QSort(int a[], int n)
{
	int nIdx = adjust(a, 0, n -1);

    //针对调整之后的数据左右两侧序列都再次进行调整
	if(nIdx != -1)
	{
		QSort(&a[0], nIdx);
		QSort(&a[nIdx + 1], n - nIdx - 1);
	}
}

这里定义了一个函数作为快速排序的函数,函数需要传入序列的首地址以及序列中间元素的长度。在排序函数中只需要关注如何进行调整即可。

这里进行了一个判断,当调整函数返回-1时表示不需要调整,也就是说此时已经都是有序的了,这个时候就不需要调整了。

程序的基本框架已经完成了,剩下的就是如何编写调整函数了。调整的算法如下:

  1. 首先定义两个指针,指向最右侧和最左侧,最左侧指针指向基准数所在位置

  2. 先从右往左扫描,当发现右侧数小于基准值时,将基准值位置的数替换为该数,并且立刻从左往右扫描,直到找到一个数大于基准值,再次进行替换

  3. 接着再次从右往左扫描,直到找到小于基准数的值;并再次改变扫描顺序,直到调整完毕

最后直到两个指针重合,此时重合的位置就是基准值所在位置

根据这个思路,可以编写如下代码

int QuickSort(int a[], int nLow, int nHigh)
{
	if (nLow >= nHigh)
	{
		return -1;
	}

	int tmp = a[nLow];

	int i = nLow;
	int j = nHigh;

	while (i != j)
	{
		//先从右往左扫描,只到找到比基准值小的数
		//将该数放到基准值的左侧
		while (a[j] > tmp && j > i)
		{
			j--;
		}
		if (a[j] < tmp)
		{
			a[i]= a[j];
			i++;
		}

		//接着从左往右扫描,直到找到比基准值大的数
		//将该数放入到基准值的右侧
		while (a[i] < tmp && i < j)
		{
			i++;
		}
		
		if (a[i] > tmp)
		{
			a[j] = a[i];

			j--;
		}
	}
	
	a[i] = tmp;
	return i;
}

到此已经完成了快速排序的算法编写了。

在有大量的数据需要进行排序时快速排序的效果比较好,如果数据量小,或者排序的序列已经是一个逆序的有序序列,它退化成O(n^2)。

快速排序是一个不稳定的排序算法。


posted @ 2019-04-06 13:48  masimaro  阅读(180)  评论(0编辑  收藏  举报