什么才算是真正的编程能力?
编程能力是一种解决问题的能力。如果问题没能被很好地解决,知道再多也没用。
编程能力是一种运用机器解决问题的能力。首先是要判断问题在什么程度上可被机器解决,比如理论计算机科学会告诉我们什么可做、什么理论上不可做、什么理论上可做实践上不可做。然后是让机器更好地理解问题,比如计算机都是(图灵-冯诺依曼模型)等价,但不同的问题可能会适用不同的编程语言。再后是让机器能更高效率地解决问题,比如同样的问题可能会有效率差别巨大的算法。
编程能力是一种抽象问题的能力。借用轮子是很好的办法,省力省时间。今天任何软件工程师都会有意无意地使用很多轮子,从操作系统编译器数据库网络到算法数据结构。想高效地借用轮子,就需要将问题分解再分解,抽象再抽象。任何一个实用的系统(不包括教科书上的示例程序和简单的脚本程序)都需要进行大量的分拆和组合。所以系统设计是编程能力里的高级技能,加合理的假设简化问题尤其有难度,此处不展开讨论。
高手和新手的区别在于新手往往不知道轮子的适用范围,而高手的手上轮子数量多且熟知各种轮子的差异,所以对不同的问题可以轻松地找到合适的轮子,当实在找不到合适的轮子时可以自己动手改造现有的轮子。平时有时间拆装和改造已有的轮子会对水平提升有较大帮助。当然能知道怎样快速在搜索引擎里搜出轮子也是一种能力。
编程能力是一种需要考虑扩展性的能力。算法竞赛中的很多算法考虑的是单机的内存算法,计算模型经过高度抽象,在实践中机器的模型更为复杂。比如单机的多级结构带来的各种时间空间复杂度的取舍平衡,多机网络中如何能在提高单机性能外进一步优化整体性能。除了在机器端的扩展,在程序员一端的扩展也很重要。复杂的问题和工程往往意味着团队协同以及更长时间的开发维护,团队分工和设计沟通这里暂且不论。举个容易被忽视的例子,程序中的注释。高手会更在意完整且表达清楚的注释,因为这是写给现在和未来的团队(包括自己和其他成员)看的,直接影响到长期的整体开发维护效率。
编程能力是一种取舍的能力。局部的最优解未必是全局的最优解。如果一个美妙的解决方案需要将完工时间向后推迟一两个月,需要考虑是否先使用平凡方案解决问题,之后再进行优化。当你的工作延后会阻碍别人的工作时尤其如此。发现一个绝妙的优化方案时先想想这个优化是否真的有价值,如果只是系统中很小的部分,那么不要为了追求心理满足而花很多时间放一个漂亮的轮子上去(参考Amdahl定律)。
编程能力是一种预见未来的能力。目前的方案有哪些假设和局限性,在何种情形下会遇到问题甚至崩溃。在未来出现问题时问题是否需要重新定义,系统是否需要重新设计,代码是否需要重构或优化等等都需要未雨绸缪。编程能力是一种工程能力。无它,唯手熟尔。
编程能力是一种解决问题的能力。如果问题没能被很好地解决,知道再多也没用。
编程能力是一种解决问题的能力。如果问题没能被很好地解决,知道再多也没用。(重要的事情说三遍,重要的事情说三遍,重要的事情说三遍)