Elasticsearch是什么?
Elasticsearch(简称ES)是一个分布式、可扩展、实时的搜索与数据分析引擎。ES不仅仅只是全文搜索,还支持结构化搜索、数据分析、复杂的语言处理、地理位置和对象间关联关系等。
ES的底层依赖Lucene,Lucene可以说是当下最先进、高性能、全功能的搜索引擎库。但是Lucene仅仅只是一个库。为了充分发挥其功能,你需要使用Java并将Lucene直接集成到应用程序中。更糟糕的是,您可能需要获得信息检索学位才能了解其工作原理,因为Lucene非常复杂。
鉴于Lucene如此强大却难以上手的特点,诞生了ES。ES也是使用Java编写的,它的内部使用Lucene做索引与搜索,它的目的是隐藏Lucene的复杂性,取而代之的提供一套简单一致的RESTful API。
ES具有如下特点:
一个分布式的实时文档存储引擎,每个字段都可以被索引与搜索
一个分布式实时分析搜索引擎,支持各种查询和聚合操作
能胜任上百个服务节点的扩展,并可以支持PB级别的结构化或者非结构化数据。
为什么要使用ElasticSearch
关系型数据库有什么问题?
传统的关系数据库提供事务保证,具有不错的性能,高可靠性,久经历史考验,而且使用简单,功能强大,同时也积累了大量的成功案例。
后来,随着访问量的上升,几乎大部分使用 MySQL 架构的网站在数据库上都开始出现了性能问题,web 程序不再仅仅专注在功能上,同时也在追求性能。
读写分离
由于数据库的写入压力增加,读写集中在一个数据库上让数据库不堪重负,大部分网站开始使用主从复制技术来达到读写分离,以提高读写性能和读库的可扩展性。Mysql 的 master-slave 模式成为这个时候的网站标配了。
分表分库
开始流行使用分表分库来缓解写压力和数据增长的扩展问题。这个时候,分表分库成了一个热门技术,也是业界讨论的热门技术问题。
MySQL 的扩展性瓶颈
大数据量高并发环境下的 MySQL 应用开发越来越复杂,也越来越具有技术挑战性。分表分库的规则把握都是需要经验的。虽然有像淘宝这样技术实力强大的公司开发了透明的中间件层来屏蔽开发者的复杂性,但是避免不了整个架构的复杂性。分库分表的子库到一定阶段又面临扩展问题。还有就是需求的变更,可能又需要一种新的分库方式。
关系数据库很强大,但是它并不能很好的应付所有的应用场景。MySQL 的扩展性差(需要复杂的技术来实现),大数据下 IO 压力大,表结构更改困难,正是当前使用 MySQL 的开发人员面临的问题。
ElasticSearch有什么优势?
非关系型、搜索引擎、近实时搜索与分析、高可用、天然分布式、横向可扩展。