hdu 1849 nim博弈

http://acm.hdu.edu.cn/showproblem.php?pid=1849

Nim博弈

算法分析:

Nim游戏模型:有三堆石子,分别含有abc个石子。两人轮流从某一堆中取任意多的石子,规定每次至少取一个,多者不限。最后取光者得胜。

定理1Nim游戏的一个状态(abc)是P状态,当且仅当a^b^c =0

 

对应此题就是:共有m个棋子就是m堆石子,把每个位置的标号等价于该堆石子的数目,取走最后一颗石子的人获胜,就是最后一个回到0位置的人获胜。即Nim博弈问题

View Code
// I'm lanjiangzhou
//C
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <math.h>
#include <time.h>
//C++
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <cctype>
#include <stack>
#include <string>
#include <list>
#include <queue>
#include <map>
#include <vector>
#include <deque>
#include <set>
using namespace std;

//*************************OUTPUT*************************
#ifdef WIN32
#define INT64 "%I64d"
#define UINT64 "%I64u"
#else
#define INT64 "%lld"
#define UINT64 "%llu"
#endif

//**************************CONSTANT***********************
#define INF 0x3f3f3f3f

// aply for the memory of the stack
//#pragma comment (linker, "/STACK:1024000000,1024000000")
//end

const int maxn = 1010;
int a[maxn];
int main(){
    int n;
    while(scanf("%d",&n)!=EOF){
        if(n==0) break;
        int t=0;
        for(int i=0;i<n;i++){
            scanf("%d",&a[i]);
            t=(t^a[i]);
        }
        if(t) printf("Rabbit Win!\n");
        else printf("Grass Win!\n");
    }
    return 0;
}

 

posted @ 2013-04-14 11:53  南下的小程序员  阅读(151)  评论(0编辑  收藏  举报