NYOJ--122--Triangular Sums
Triangular Sums
时间限制:3000 ms | 内存限制:65535 KB
难度:2
- 描述
-
The nth Triangular number, T(n) = 1 + … + n, is the sum of the first n integers. It is the number of points in a triangular array with n points on side. For example T(4):
X
X X
X X X
X X X X
Write a program to compute the weighted sum of triangular numbers:
W(n) =
SUM[k = 1…n; k * T(k + 1)]
- 输入
- The first line of input contains a single integer N, (1 ≤ N ≤ 1000) which is the number of datasets that follow.
Each dataset consists of a single line of input containing a single integer n, (1 ≤ n ≤300), which is the number of points on a side of the triangle. - 输出
- For each dataset, output on a single line the dataset number (1 through N), a blank, the value of n for the dataset, a blank, and the weighted sum ,W(n), of triangular numbers for n.
- 样例输入
-
4 3 4 5 10
- 样例输出
-
1 3 45 2 4 105 3 5 210
4 10 2145
-
-
#include<stdio.h> #define T(k) (k)*(k+1)/2 int main() { int N; int k = 0; scanf("%d",&N); while(N--){ int n; int num = 0; scanf("%d",&n); for(int i=1;i<=n;i++)num +=i*T(i+1); k++; printf("%d %d %d\n",k,n,num); } return 0; }