CIFAR10实战合集
Tips:
人工智能难题不仅是计算机科学问题,更是数学、认知科学和哲学问题。− François Chollet
代码
CIFAR10自定义网络实战
点击查看代码
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics
from tensorflow import keras
def preprocess(x, y):
# [0, 255] --> [-1,1]
x = 2 * tf.cast(x, dtype=tf.float32) / 255. - 1.
y = tf.cast(y, dtype=tf.int32)
return x, y
batch_size = 128
# x --> [32,32,3], y --> [10k, 1]
(x, y), (x_val, y_val) = datasets.cifar10.load_data()
y = tf.squeeze(y) # [10k, 1] --> [10k]
y_val = tf.squeeze(y_val)
y = tf.one_hot(y, depth=10) # [50k, 10]
y_val = tf.one_hot(y_val, depth=10) # [10k, 10]
print('datasets:', x.shape, y.shape, x_val.shape, y_val.shape, x.min(),
x.max())
# 构建数据集
train_db = tf.data.Dataset.from_tensor_slices((x, y))
train_db = train_db.map(preprocess).shuffle(10000).batch(batch_size)
test_db = tf.data.Dataset.from_tensor_slices((x_val, y_val))
test_db = test_db.map(preprocess).batch(batch_size)
sample = next(iter(train_db))
print('batch:', sample[0].shape, sample[1].shape)
# 新建网络对象
class MyDense(layers.Layer):
# to replace standard layers.Dense()
def __init__(self, inp_dim, outp_dim):
super(MyDense, self).__init__()
self.kernel = self.add_weight('w', [inp_dim, outp_dim])
# self.bias = self.add_weight('b', [outp_dim])
def call(self, inputs, training=None):
x = inputs @ self.kernel
return x
# 自定义网络层
class MyNetwork(keras.Model):
def __init__(self):
super(MyNetwork, self).__init__()
self.fc1 = MyDense(32 * 32 * 3, 256)
self.fc2 = MyDense(256, 128)
self.fc3 = MyDense(128, 64)
self.fc4 = MyDense(64, 32)
self.fc5 = MyDense(32, 10)
def call(self, inputs, training=None):
"""inputs: [b,32,32,3]"""
x = tf.reshape(inputs, [-1, 32 * 32 * 3])
# [b,32*32*3] --> [b, 256]
x = self.fc1(x)
x = tf.nn.relu(x)
# [b, 256] --> [b,128]
x = self.fc2(x)
x = tf.nn.relu(x)
# [b, 128] --> [b,64]
x = self.fc3(x)
x = tf.nn.relu(x)
# [b, 64] --> [b,32]
x = self.fc4(x)
x = tf.nn.relu(x)
# [b, 32] --> [b,10]
x = self.fc5(x)
return x
network = MyNetwork()
# 装配
network.compile(optimizer=optimizers.Adam(lr=1e-3),
loss=tf.losses.CategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
# 训练
network.fit(train_db, epochs=5, validation_data=test_db, validation_freq=1)
network.evaluate(test_db)
network.save_weights('ckpt/weights.ckpt') # 模型的保存
del network
print('saved to ckpt/weights.ckpt')
# 模型的加载
network = MyNetwork()
network.compile(optimizer=optimizers.Adam(lr=1e-3),
loss=tf.losses.CategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
network.load_weights('ckpt/weights.ckpt')
print('loaded weights from file.')
network.evaluate(test_db)
CIFAR10与VGG13实战
点击查看代码
import os
import tensorflow as tf
from tensorflow.keras import layers, optimizers, datasets, Sequential
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
tf.random.set_seed(2345)
conv_layers = [ # 5 units of conv + max pooling
# unit 1
layers.Conv2D(64, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.Conv2D(64, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# unit 2
layers.Conv2D(128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.Conv2D(128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# unit 3
layers.Conv2D(256, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.Conv2D(256, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# unit 4
layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# unit 5
layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same')
]
def preprocess(x, y):
# [0~1]
x = 2 * tf.cast(x, dtype=tf.float32) / 255. - 1
y = tf.cast(y, dtype=tf.int32)
return x, y
(x, y), (x_test, y_test) = datasets.cifar10.load_data()
y = tf.squeeze(y, axis=1)
y_test = tf.squeeze(y_test, axis=1)
print(x.shape, y.shape, x_test.shape, y_test.shape)
train_db = tf.data.Dataset.from_tensor_slices((x, y))
train_db = train_db.shuffle(1000).map(preprocess).batch(128)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test))
test_db = test_db.map(preprocess).batch(64)
sample = next(iter(train_db))
print('sample:', sample[0].shape, sample[1].shape,
tf.reduce_min(sample[0]), tf.reduce_max(sample[0]))
def main():
# [b, 32, 32, 3] => [b, 1, 1, 512]
conv_net = Sequential(conv_layers)
fc_net = Sequential([
layers.Dense(256, activation=tf.nn.relu),
layers.Dense(128, activation=tf.nn.relu),
layers.Dense(10, activation=None),
])
conv_net.build(input_shape=[None, 32, 32, 3])
fc_net.build(input_shape=[None, 512])
conv_net.summary()
fc_net.summary()
optimizer = optimizers.Adam(learning_rate=1e-4)
# [1, 2] + [3, 4] => [1, 2, 3, 4]
variables = conv_net.trainable_variables + fc_net.trainable_variables
for epoch in range(5):
for step, (x, y) in enumerate(train_db):
with tf.GradientTape() as tape:
# [b, 32, 32, 3] => [b, 1, 1, 512]
out = conv_net(x)
# flatten, => [b, 512]
out = tf.reshape(out, [-1, 512])
# [b, 512] => [b, 10]
logits = fc_net(out)
# [b] => [b, 10]
y_onehot = tf.one_hot(y, depth=10)
# compute loss
loss = tf.losses.categorical_crossentropy(y_onehot, logits, from_logits=True)
loss = tf.reduce_mean(loss)
grads = tape.gradient(loss, variables)
optimizer.apply_gradients(zip(grads, variables))
if step % 100 == 0:
print(epoch, step, 'loss:', float(loss))
total_num = 0
total_correct = 0
for x, y in test_db:
out = conv_net(x)
out = tf.reshape(out, [-1, 512])
logits = fc_net(out)
prob = tf.nn.softmax(logits, axis=1)
pred = tf.argmax(prob, axis=1)
pred = tf.cast(pred, dtype=tf.int32)
correct = tf.cast(tf.equal(pred, y), dtype=tf.int32)
correct = tf.reduce_sum(correct)
total_num += x.shape[0]
total_correct += int(correct)
acc = total_correct / total_num
print(epoch, 'acc:', acc)
if __name__ == '__main__':
main()
CIFAR10与ResNet18实战
点击查看resnet代码
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, Sequential
class BasicBlock(layers.Layer):
# 残差模块
def __init__(self, filter_num, stride=1):
super(BasicBlock, self).__init__()
# 第一个卷积单元
self.conv1 = layers.Conv2D(filter_num, (3, 3), strides=stride, padding='same')
self.bn1 = layers.BatchNormalization()
self.relu = layers.Activation('relu')
# 第二个卷积单元
self.conv2 = layers.Conv2D(filter_num, (3, 3), strides=1, padding='same')
self.bn2 = layers.BatchNormalization()
if stride != 1: # 通过1x1卷积完成shape匹配
self.downsample = Sequential()
self.downsample.add(layers.Conv2D(filter_num, (1, 1), strides=stride))
else: # shape匹配,直接短接
self.downsample = lambda x: x
def call(self, inputs, training=None):
# [b, h, w, c],通过第一个卷积单元
out = self.conv1(inputs)
out = self.bn1(out)
out = self.relu(out)
# 通过第二个卷积单元
out = self.conv2(out)
out = self.bn2(out)
# 通过identity模块
identity = self.downsample(inputs)
# 2条路径输出直接相加
output = layers.add([out, identity])
output = tf.nn.relu(output) # 激活函数
return output
class ResNet(keras.Model):
# 通用的ResNet实现类
def __init__(self, layer_dims, num_classes=10): # [2, 2, 2, 2]
super(ResNet, self).__init__()
# 根网络,预处理
self.stem = Sequential([layers.Conv2D(64, (3, 3), strides=(1, 1)),
layers.BatchNormalization(),
layers.Activation('relu'),
layers.MaxPool2D(pool_size=(2, 2), strides=(1, 1), padding='same')
])
# 堆叠4个Block,每个block包含了多个BasicBlock,设置步长不一样
self.layer1 = self.build_resblock(64, layer_dims[0])
self.layer2 = self.build_resblock(128, layer_dims[1], stride=2)
self.layer3 = self.build_resblock(256, layer_dims[2], stride=2)
self.layer4 = self.build_resblock(512, layer_dims[3], stride=2)
# 通过Pooling层将高宽降低为1x1
self.avgpool = layers.GlobalAveragePooling2D()
# 最后连接一个全连接层分类
self.fc = layers.Dense(num_classes)
def call(self, inputs, training=None):
# 通过根网络
x = self.stem(inputs)
# 一次通过4个模块
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
# 通过池化层
x = self.avgpool(x)
# 通过全连接层
x = self.fc(x)
return x
def build_resblock(self, filter_num, blocks, stride=1):
# 辅助函数,堆叠filter_num个BasicBlock
res_blocks = Sequential()
# 只有第一个BasicBlock的步长可能不为1,实现下采样
res_blocks.add(BasicBlock(filter_num, stride))
for _ in range(1, blocks): # 其他BasicBlock步长都为1
res_blocks.add(BasicBlock(filter_num, stride=1))
return res_blocks
def resnet18():
# 通过调整模块内部BasicBlock的数量和配置实现不同的ResNet
return ResNet([2, 2, 2, 2])
def resnet34():
# 通过调整模块内部BasicBlock的数量和配置实现不同的ResNet
return ResNet([3, 4, 6, 3])
点击查看"CIFAR10与ResNet18实战"代码
import os
import tensorflow as tf
from tensorflow.keras import optimizers, datasets
from resnet import resnet18
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
tf.random.set_seed(2345)
def preprocess(x, y):
# 将数据映射到-1~1
x = 2 * tf.cast(x, dtype=tf.float32) / 255. - 1
y = tf.cast(y, dtype=tf.int32) # 类型转换
return x, y
(x, y), (x_test, y_test) = datasets.cifar10.load_data() # 加载数据集
y = tf.squeeze(y, axis=1) # 删除不必要的维度
y_test = tf.squeeze(y_test, axis=1) # 删除不必要的维度
print(x.shape, y.shape, x_test.shape, y_test.shape)
train_db = tf.data.Dataset.from_tensor_slices((x, y)) # 构建训练集
# 随机打散,预处理,批量化
train_db = train_db.shuffle(1000).map(preprocess).batch(512)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)) # 构建测试集
# 随机打散,预处理,批量化
test_db = test_db.map(preprocess).batch(512)
# 采样一个样本
sample = next(iter(train_db))
print('sample:', sample[0].shape, sample[1].shape,
tf.reduce_min(sample[0]), tf.reduce_max(sample[0]))
def main():
# [b, 32, 32, 3] => [b, 1, 1, 512]
model = resnet18() # ResNet18网络
model.build(input_shape=(None, 32, 32, 3))
model.summary() # 统计网络参数
optimizer = optimizers.Adam(learning_rate=1e-4) # 构建优化器
for epoch in range(5): # 训练epoch
for step, (x, y) in enumerate(train_db):
with tf.GradientTape() as tape:
# [b, 32, 32, 3] => [b, 10],前向传播
logits = model(x)
# [b] => [b, 10],one-hot编码
y_onehot = tf.one_hot(y, depth=10)
# 计算交叉熵
loss = tf.losses.categorical_crossentropy(y_onehot, logits, from_logits=True)
loss = tf.reduce_mean(loss)
# 计算梯度信息
grads = tape.gradient(loss, model.trainable_variables)
# 更新网络参数
optimizer.apply_gradients(zip(grads, model.trainable_variables))
if step % 50 == 0:
print(epoch, step, 'loss:', float(loss))
total_num = 0
total_correct = 0
for x, y in test_db:
logits = model(x)
prob = tf.nn.softmax(logits, axis=1)
pred = tf.argmax(prob, axis=1)
pred = tf.cast(pred, dtype=tf.int32)
correct = tf.cast(tf.equal(pred, y), dtype=tf.int32)
correct = tf.reduce_sum(correct)
total_num += x.shape[0]
total_correct += int(correct)
acc = total_correct / total_num
print(epoch, 'acc:', acc)
if __name__ == '__main__':
main()
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具