(转)Bullet 引擎 详解 DBVT 分析
DBVT 在bullet 引擎中是很基础且重要的一个数据结构,本质上是一个可以动态更新的AABB树。在bullet的远距阶段是很高效的碰撞检测数据结构(比较OOB,K- DOP)。是组成dbvtbroadphase的重要成员。
首先看看树中节点的定义
view plaincopy to clipboardprint?
struct btDbvtNode
{
btDbvtVolume volume; // point to the bounding volume
btDbvtNode* parent; // point to parent node
DBVT_INLINE bool isleaf() const { return(childs[1]==0); }
DBVT_INLINE bool isinternal() const { return(!isleaf()); }
union
{
btDbvtNode* childs[2]; // point to child nodes if node is internal type
void* data; // point to Dbvtproxy object if node is leaf node
int dataAsInt; // padding ?
};
};
struct btDbvtNode
{
btDbvtVolume volume; // point to the bounding volume
btDbvtNode* parent; // point to parent node
DBVT_INLINE bool isleaf() const { return(childs[1]==0); }
DBVT_INLINE bool isinternal() const { return(!isleaf()); }
union
{
btDbvtNode* childs[2]; // point to child nodes if node is internal type
void* data; // point to Dbvtproxy object if node is leaf node
int dataAsInt; // padding ?
};
};
很明显这是一个典型的二叉树节点,同时当node是内部节点时将指向2个子结点,node是叶子节点时,将指向用户定义数据(具体见后续分析)
--------------------------------------------------------------------------------
接下来是DBVT 的部分基础定义
view plaincopy to clipboardprint?
struct btDbvt
{
// Fields
btDbvtNode* m_root; // root node of the tree
btDbvtNode* m_free; // node buffer last one deleted
int m_lkhd; // number of look ahead
int m_leaves; // number of nodes
unsigned m_opath; // bitmap, mean the path to the node
}
struct btDbvt
{
// Fields
btDbvtNode* m_root; // root node of the tree
btDbvtNode* m_free; // node buffer last one deleted
int m_lkhd; // number of look ahead
int m_leaves; // number of nodes
unsigned m_opath; // bitmap, mean the path to the node
}
这里的look ahead 基本没有在代码中用到。 m_opath将在优化中使用,主要用于纪录通往特定节点的路径。
--------------------------------------------------------------------------------
创建节点比较直接,唯一值得注意的就是利用到了m_free 这个最后被从树中删除的节点(节点分配内存未释放)
如果m_free仍未被释放就重复利用,节省一次malloc调用。
view plaincopy to clipboardprint?
static DBVT_INLINE btDbvtNode* createnode( btDbvt* pdbvt,
btDbvtNode* parent,
void* data)
{
btDbvtNode* node;
//if the node pool is avaliable
if(pdbvt->m_free)
{ node=pdbvt->m_free;pdbvt->m_free=0; } // if yes, use it and reset the pointer
else
{ node=new(btAlignedAlloc(sizeof(btDbvtNode),16)) btDbvtNode(); } // otherwise alloc memory to node
node->parent = parent; // set the parent
node->data = data; // set the data
node->childs[1] = 0; // set the right child pointer as null
return(node);
}
static DBVT_INLINE btDbvtNode* createnode( btDbvt* pdbvt,
btDbvtNode* parent,
void* data)
{
btDbvtNode* node;
//if the node pool is avaliable
if(pdbvt->m_free)
{ node=pdbvt->m_free;pdbvt->m_free=0; } // if yes, use it and reset the pointer
else
{ node=new(btAlignedAlloc(sizeof(btDbvtNode),16)) btDbvtNode(); } // otherwise alloc memory to node
node->parent = parent; // set the parent
node->data = data; // set the data
node->childs[1] = 0; // set the right child pointer as null
return(node);
}
--------------------------------------------------------------------------------
插入节点到树中较为复杂,主要算法是插入到树中距离被插入节点距离(曼哈顿距离)最近的节点,并且合成新的父节点,并且向上传导包围体的变化(复习一下AABB)。
--------------------------------------------------------------------------------
删除节点和插入节点比较类似,主要算法是用兄弟节点替换父节点,同时向上传导产生的包围体变化。
--------------------------------------------------------------------------------
节点排序,检查父节点和字节点对象的地址,如果父节点地址高于子节点,则交换父子节点,
view plaincopy to clipboardprint?
//make sure the parent's address is smaller than child node
static DBVT_INLINE btDbvtNode* sort(btDbvtNode* n,btDbvtNode*& r) // r is reference
{
btDbvtNode* p=n->parent;
btAssert(n->isinternal());
if(p>n) //all idea is swap the postion betwwen p and n . if the n address is smaller than p address.
{
const int i=indexof(n);
const int j=1-i;
btDbvtNode* s=p->childs[j]; // get the sibling node
btDbvtNode* q=p->parent; // get the grand father node
btAssert(n==p->childs[i]); // confirm again!
if(q) q->childs[indexof(p)]=n; else r=n;
s->parent=n; // reset the sibling node's parent to node
p->parent=n; // reset the parent's parent to node
n->parent=q; // reset the node's parent to grand father
p->childs[0]=n->childs[0]; //reset parent node' child node to node's child
p->childs[1]=n->childs[1]; //reset parent node' child node to node's child
n->childs[0]->parent=p; //reset node's child node's parent node to parent
n->childs[1]->parent=p; //reset node's child node's parent node to parent
n->childs[i]=p; //reset node's child to parent node
n->childs[j]=s; //reset node's child to parent node
btSwap(p->volume,n->volume); //swap the volume
return(p); //make sure return the greater one
}
return(n); //make sure return the greater one
}
本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/superwiles/archive/2010/02/18/5310655.aspx