LeetCode Longest Valid Parentheses

class Solution {
public:
    int longestValidParentheses(string s) {
        vector<int> stack;
        int maxlen = 0;
        int curlen = 0;
        int last = -1;
        int len = s.length();
        for (int i=0; i<len; i++) {
            char ch = s[i];
            if (ch == '(') {
                stack.push_back(i);
                continue;
            }
            if (stack.empty()) {
                last = i;
                continue;
            }
            stack.pop_back();
            if (stack.empty()) {
                curlen = i - last;
            } else {
                curlen = i - stack.back();
            }
            
            if (curlen > maxlen) maxlen = curlen;
        }
        
        return maxlen;
    }
};

参考:http://www.cnblogs.com/zhuli19901106/p/3547419.html

last用来记录最后一个无法匹配的右括号的位置,当stack为空时,必然存在一个合法的括号序列,而这个序列的起始肯定是last后面的一个位置。

智商有限,做了好久,只有看答案了。。。

 

第二轮:

Given a string containing just the characters '(' and ')', find the length of the longest valid (well-formed) parentheses substring.

For "(()", the longest valid parentheses substring is "()", which has length = 2.

Another example is ")()())", where the longest valid parentheses substring is "()()", which has length = 4.

还是没想起来,真是硬伤啊,真是硬伤。。。

class Solution {
public:
    int longestValidParentheses(string s) {
        int len = s.size();
        if (len < 2) return 0;
        int last_invalid = -1;
        
        int pos = 0;
        int maxlen = 0;

        vector<int> idx;
        while (pos<len) {
            char ch = s[pos];
            
            if (ch == '(') {
                idx.push_back(pos);
                pos++;
                continue;
            }
            
            if (idx.empty()) {
                last_invalid = pos;
                pos++;
                continue;
            }
            
            idx.pop_back();
            if (idx.empty()) {
                maxlen = max(maxlen, pos - last_invalid);
            } else {
                maxlen = max(maxlen, pos - idx.back());
            }
            pos++;
        }
        return maxlen;
    }
};

 

posted @ 2014-08-12 10:18  卖程序的小歪  阅读(147)  评论(0编辑  收藏  举报