LeetCode Distinct Subsequences

Given a string S and a string T, count the number of distinct subsequences of T in S.

A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).

Here is an example:
S = "rabbbit", T = "rabbit"

Return 3.

#include <iostream>
#include <string>
#include <cstdlib>
#include <cstring>

using namespace std;

class Solution {
private:
    // only used by dfs
    int *memo;
    int cols;
public:
    // 1. dfs
    int numDistinct(string S, string T) {
        int ret = 0;
        cols = T.length();
        int msize = S.length() * cols;
        memo = new int[msize];
        memset(memo, -1, msize * sizeof(int));
        ret = dfs(S, 0, T, 0);
        delete[] memo;
        return ret;
    }
    
    int dfs(string& S, int pa, string& T, int pb) {
        
        if (pb >= T.size()) {
            return 1;
        }
        if (pa >= S.size()) return 0;
        if (memo[pa * cols + pb] != -1) return memo[pa * cols + pb];
        int r = 0;
        if (S[pa] == T[pb]) {
            r += dfs(S, pa + 1, T, pb + 1);
        }
        r += dfs(S, pa + 1, T, pb);
        memo[pa * cols + pb] = r;
        return r;
    }
    
    // 2. dynamic programming
    int _numDistinct(string S, string T) {
        int ret = 0;
        int rows = S.length() + 1;
        int cols = T.length() + 1;
        int* dp = new int[rows * cols];
        
        for (int i=0; i<cols; i++) dp[i] = 0;
        for (int i=0; i<rows; i++) dp[i*cols] = 1;
        
        for (int i=1; i<rows; i++) {
            for (int j=1; j<cols; j++) {
                dp[i*cols + j] = ((S[i-1] == T[j-1]) ? dp[(i-1)*cols + j-1]:0)
                                + dp[(i-1) * cols + j]; 
            }    
        }
        ret = dp[rows * cols - 1];
        delete[] dp;
        return ret;
    }
};

int main() {
    Solution s;
    cout<<s._numDistinct("xrabbbit", "rabbit")<<endl;
    system("pause");
    return 0;    
}

跟往常一样凡是能用dfs+memo解决的,都可以改写为动态规划的形式,实质上即一个问题有最优子问题组成的解。

隔了一年想不起来了,dp看来还是无法掌握,IQ有限:

class Solution {
public:
    int numDistinct(string s, string t) {
        int slen = s.size();
        int tlen = t.size();
        
        vector<vector<int> > dp(slen + 1, vector<int>(tlen + 1, 0));
        for (int i=0; i <= slen; i++) {
            dp[i][0] = 1;
        }
        for (int i=1; i<=slen; i++) {
            for (int j=1; j<=tlen; j++) {
                dp[i][j] = dp[i-1][j] + (s[i-1] == t[j-1] ? dp[i-1][j-1] : 0);
            }
        }
        return dp[slen][tlen];
    }
};

 

posted @ 2014-03-19 23:57  卖程序的小歪  阅读(167)  评论(0编辑  收藏  举报