LeetCode Unique Paths II
class Solution { public: int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) { vector<vector<int> >& dp = obstacleGrid; if (dp.empty() || dp[0].empty()) return 0; dp[0][0] = (dp[0][0] == 1) ? 0 : 1; for (int i=1; i<dp.size(); i++) { dp[i][0] = (dp[i][0] == 1) ? 0 : dp[i-1][0]; } for (int i=1; i<dp[0].size(); i++) { dp[0][i] = (dp[0][i] == 1) ? 0 : dp[0][i-1]; } for (int i=1; i<dp.size(); i++) { for (int j=1; j<dp[i].size(); j++) { dp[i][j] = (dp[i][j] == 1) ? 0 : dp[i-1][j] + dp[i][j-1]; } } return dp.back().back(); } };
和Unique Paths一样只不过这回不太能用公式直接得出了,在动态规划时依据提供的障碍信息确定如何选取子问题的解,方便起见直接将入参用作dp数组
第二轮:
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
如果当前位置有障碍那么该处的dp数组元素直接为0,其余和unique path一样
class Solution { public: int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) { int m = obstacleGrid.size(); if (m < 1) return 0; int n = obstacleGrid[0].size(); if (n < 1) return 0; int* dp = new int[n+1]; for (int i=0; i<=n; i++) dp[i] = 0; if (obstacleGrid[0][0] != 1) dp[1] = 1; for (int i=0; i<m; i++) { for (int j=1; j<=n; j++) { if (obstacleGrid[i][j-1] != 1) { dp[j] = dp[j] + dp[j-1]; } else { dp[j] = 0; } } } return dp[n]; } };