B. Mashmokh and ACM(dp)

http://codeforces.com/problemset/problem/414/B

B. Mashmokh and ACM
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Mashmokh's boss, Bimokh, didn't like Mashmokh. So he fired him. Mashmokh decided to go to university and participate in ACM instead of finding a new job. He wants to become a member of Bamokh's team. In order to join he was given some programming tasks and one week to solve them. Mashmokh is not a very experienced programmer. Actually he is not a programmer at all. So he wasn't able to solve them. That's why he asked you to help him with these tasks. One of these tasks is the following.

A sequence of l integers b1, b2, ..., bl (1 ≤ b1 ≤ b2 ≤ ... ≤ bl ≤ n) is called good if each number divides (without a remainder) by the next number in the sequence. More formally  for all i (1 ≤ i ≤ l - 1).

Given n and k find the number of good sequences of length k. As the answer can be rather large print it modulo 1000000007 (109 + 7).

Input

The first line of input contains two space-separated integers n, k (1 ≤ n, k ≤ 2000).

Output

Output a single integer — the number of good sequences of length k modulo 1000000007 (109 + 7).

Sample test(s)
input
3 2
output
5
input
6 4
output
39
input
2 1
output
2
Note

In the first sample the good sequences are: [1, 1], [2, 2], [3, 3], [1, 2], [1, 3].

题意:1~n组成的不下降序列,求出序列长度为k的序列种数,每个序列满足序列中的后一个数都能整除前一个数。

思路:后一个数的确定只与前一个数有关,设dp[i][j]表示长度为i的序列中的最后一个数为j,则dp[i][z] = dp[i][z]+dp[i-1][j],其中z是j的倍数。

复制代码
 1 #include <stdio.h>
 2 #include <string.h>
 3 #include <iostream>
 4 #include <algorithm>
 5 using namespace std;
 6 const int MOD=1000000007;
 7 int dp[2002][2002];
 8 int main()
 9 {
10     int n,k;
11     while(cin>>n>>k)
12     {
13         memset(dp,0,sizeof(dp));
14         for (int i = 1; i <= n; i++)
15             dp[1][i] = 1;
16         for (int i = 1; i <= k; i++)
17         {
18             for (int j = 1; j <= n; j++)
19             {
20                 for (int z = j; z <= n; z+=j)
21                 {
22                     dp[i][z] = (dp[i][z]+dp[i-1][j])%MOD;
23                 }
24             }
25         }
26         int ans = 0;
27         for (int i = 1; i <= n; i++)
28         {
29             ans+=dp[k][i];
30             ans%=MOD;
31         }
32         cout<<ans<<endl;
33     }
34     return 0;
35 }
View Code
复制代码

 

posted @   N_ll  阅读(366)  评论(0编辑  收藏  举报
编辑推荐:
· 理解Rust引用及其生命周期标识(下)
· 从二进制到误差:逐行拆解C语言浮点运算中的4008175468544之谜
· .NET制作智能桌面机器人:结合BotSharp智能体框架开发语音交互
· 软件产品开发中常见的10个问题及处理方法
· .NET 原生驾驭 AI 新基建实战系列:向量数据库的应用与畅想
阅读排行:
· C# 13 中的新增功能实操
· Ollama本地部署大模型总结
· 2025成都.NET开发者Connect圆满结束
· langchain0.3教程:从0到1打造一个智能聊天机器人
· 用一种新的分类方法梳理设计模式的脉络
点击右上角即可分享
微信分享提示