给我 O(1) 的时间,我可以删除/查找数组中的任意元素

给我 O(1) 的时间,我可以删除/查找数组中的任意元素

读完本文,你不仅学会了算法套路,还可以顺便去 LeetCode 上拿下如下题目:

380.常数时间插入、删除和获取随机元素

710.黑名单中的随机数

-----------

本文讲两道比较有技巧性的数据结构设计题,都是和随机读取元素相关的,我们前文 水塘抽样算法 也写过类似的问题。

这写问题的一个技巧点在于,如何结合哈希表和数组,使得数组的删除操作时间复杂度也变成 O(1)?

下面来一道道看。

实现随机集合

这是力扣第 380 题,看下题目:

就是说就是让我们实现如下一个类:

class RandomizedSet {
public:
    /** 如果 val 不存在集合中,则插入并返回 true,否则直接返回 false */
     bool insert(int val) {}
    
    /** 如果 val 在集合中,则删除并返回 true,否则直接返回 false */
    bool remove(int val) {}
    
    /** 从集合中等概率地随机获得一个元素 */
    int getRandom() {}
}

本题的难点在于两点:

1、插入,删除,获取随机元素这三个操作的时间复杂度必须都是 O(1)

2、getRandom 方法返回的元素必须等概率返回随机元素,也就是说,如果集合里面有 n 个元素,每个元素被返回的概率必须是 1/n

我们先来分析一下:对于插入,删除,查找这几个操作,哪种数据结构的时间复杂度是 O(1)?

HashSet 肯定算一个对吧。哈希集合的底层原理就是一个大数组,我们把元素通过哈希函数映射到一个索引上;如果用拉链法解决哈希冲突,那么这个索引可能连着一个链表或者红黑树。

那么请问对于这样一个标准的 HashSet,你能否在 O(1) 的时间内实现 getRandom 函数?

其实是不能的,因为根据刚才说到的底层实现,元素是被哈希函数「分散」到整个数组里面的,更别说还有拉链法等等解决哈希冲突的机制,基本做不到 O(1) 时间等概率随机获取元素。

除了 HashSet,还有一些类似的数据结构,比如哈希链表 LinkedHashSet,我们前文 手把手实现LRU算法手把手实现LFU算法 讲过这类数据结构的实现原理,本质上就是哈希表配合双链表,元素存储在双链表中。

但是,LinkedHashSet 只是给 HashSet 增加了有序性,依然无法按要求实现我们的 getRandom 函数,因为底层用链表结构存储元素的话,是无法在 O(1) 的时间内访问某一个元素的。

根据上面的分析,对于 getRandom 方法,如果想「等概率」且「在 O(1) 的时间」取出元素,一定要满足:底层用数组实现,且数组必须是紧凑的

这样我们就可以直接生成随机数作为索引,从数组中取出该随机索引对应的元素,作为随机元素。

但如果用数组存储元素的话,插入,删除的时间复杂度怎么可能是 O(1) 呢

可以做到!对数组尾部进行插入和删除操作不会涉及数据搬移,时间复杂度是 O(1)。

所以,如果我们想在 O(1) 的时间删除数组中的某一个元素 val,可以先把这个元素交换到数组的尾部,然后再 pop

交换两个元素必须通过索引进行交换对吧,那么我们需要一个哈希表 valToIndex 来记录每个元素值对应的索引。

PS:我认真写了 100 多篇原创,手把手刷 200 道力扣题目,全部发布在 labuladong的算法小抄,持续更新。建议收藏,按照我的文章顺序刷题,掌握各种算法套路后投再入题海就如鱼得水了。

有了思路铺垫,我们直接看代码:

class RandomizedSet {
public:
    // 存储元素的值
    vector<int> nums;
    // 记录每个元素对应在 nums 中的索引
    unordered_map<int,int> valToIndex;
    
    bool insert(int val) {
        // 若 val 已存在,不用再插入
        if (valToIndex.count(val)) {
            return false;
        }
        // 若 val 不存在,插入到 nums 尾部,
        // 并记录 val 对应的索引值
        valToIndex[val] = nums.size();
        nums.push_back(val);
        return true;
    }
     
    bool remove(int val) {
        // 若 val 不存在,不用再删除
        if (!valToIndex.count(val)) {
            return false;
        }
        // 先拿到 val 的索引
        int index = valToIndex[val];
        // 将最后一个元素对应的索引修改为 index
        valToIndex[nums.back()] = index;
        // 交换 val 和最后一个元素
        swap(nums[index], nums.back());
        // 在数组中删除元素 val
        nums.pop_back();
        // 删除元素 val 对应的索引
        valToIndex.erase(val);
        return true;
    }
    
    int getRandom() {
        // 随机获取 nums 中的一个元素
        return nums[rand() % nums.size()];
    }
};

注意 remove(val) 函数,对 nums 进行插入、删除、交换时,都要记得修改哈希表 valToIndex,否则会出现错误。

至此,这道题就解决了,每个操作的复杂度都是 O(1),且随机抽取的元素概率是相等的。

避开黑名单的随机数

有了上面一道题的铺垫,我们来看一道更难一些的题目,力扣第 710 题,我来描述一下题目:

给你输入一个正整数 N,代表左闭右开区间 [0,N),再给你输入一个数组 blacklist,其中包含一些「黑名单数字」,且 blacklist 中的数字都是区间 [0,N) 中的数字。

现在要求你设计如下数据结构:

class Solution {
public:
    // 构造函数,输入参数
    Solution(int N, vector<int>& blacklist) {}
    
    // 在区间 [0,N) 中等概率随机选取一个元素并返回
    // 这个元素不能是 blacklist 中的元素
    int pick() {}
};

pick 函数会被多次调用,每次调用都要在区间 [0,N) 中「等概率随机」返回一个「不在 blacklist 中」的整数。

这应该不难理解吧,比如给你输入 N = 5, blacklist = [1,3],那么多次调用 pick 函数,会等概率随机返回 0, 2, 4 中的某一个数字。

PS:我认真写了 100 多篇原创,手把手刷 200 道力扣题目,全部发布在 labuladong的算法小抄,持续更新。建议收藏,按照我的文章顺序刷题,掌握各种算法套路后投再入题海就如鱼得水了。

而且题目要求,在 pick 函数中应该尽可能少调用随机数生成函数 rand()

这句话什么意思呢,比如说我们可能想出如下拍脑袋的解法:

int pick() {
    int res = rand() % N;
    while (res exists in blacklist) {
        // 重新随机一个结果
        res = rand() % N;
    }
    return res;
}

这个函数会多次调用 rand() 函数,执行效率竟然和随机数相关,不是一个漂亮的解法。

聪明的解法类似上一道题,我们可以将区间 [0,N) 看做一个数组,然后将 blacklist 中的元素移到数组的最末尾,同时用一个哈希表进行映射

根据这个思路,我们可以写出第一版代码(还存在几处错误):

class Solution {
public:
    int sz;
    unordered_map<int, int> mapping;
    
    Solution(int N, vector<int>& blacklist) {
        // 最终数组中的元素个数
        sz = N - blacklist.size();
        // 最后一个元素的索引
        int last = N - 1;
        // 将黑名单中的索引换到最后去
        for (int b : blacklist) {
            mapping[b] = last;
            last--;
        }
    }
};

如上图,相当于把黑名单中的数字都交换到了区间 [sz, N) 中,同时把 [0, sz) 中的黑名单数字映射到了正常数字。

根据这个逻辑,我们可以写出 pick 函数:

int pick() {
    // 随机选取一个索引
    int index = rand() % sz;
    // 这个索引命中了黑名单,
    // 需要被映射到其他位置
    if (mapping.count(index)) {
        return mapping[index];
    }
    // 若没命中黑名单,则直接返回
    return index;
}

这个 pick 函数已经没有问题了,但是构造函数还有两个问题。

第一个问题,如下这段代码:

int last = N - 1;
// 将黑名单中的索引换到最后去
for (int b : blacklist) {
    mapping[b] = last;
    last--;
}

我们将黑名单中的 b 映射到 last,但是我们能确定 last 不在 blacklist 中吗?

比如下图这种情况,我们的预期应该是 1 映射到 3,但是错误地映射到 4:

在对 mapping[b] 赋值时,要保证 last 一定不在 blacklist,可以如下操作:

// 构造函数
Solution(int N, vector<int>& blacklist) {
    sz = N - blacklist.size();
    // 先将所有黑名单数字加入 map
    for (int b : blacklist) { 
        // 这里赋值多少都可以
        // 目的仅仅是把键存进哈希表
        // 方便快速判断数字是否在黑名单内
        mapping[b] = 666;
    }

    int last = N - 1;
    for (int b : blacklist) {
        // 跳过所有黑名单中的数字
        while (mapping.count(last)) {
            last--;
        }
        // 将黑名单中的索引映射到合法数字
        mapping[b] = last;
        last--;
    }
}

第二个问题,如果 blacklist 中的黑名单数字本身就存在区间 [sz, N) 中,那么就没必要在 mapping 中建立映射,比如这种情况:

我们根本不用管 4,只希望把 1 映射到 3,但是按照 blacklist 的顺序,会把 4 映射到 3,显然是错误的。

我们可以稍微修改一下,写出正确的解法代码:

class Solution {
public:
    int sz;
    unordered_map<int, int> mapping;
    
    Solution(int N, vector<int>& blacklist) {
        sz = N - blacklist.size();
        for (int b : blacklist) {
            mapping[b] = 666;
        }

        int last = N - 1;
        for (int b : blacklist) {
            // 如果 b 已经在区间 [sz, N)
            // 可以直接忽略
            if (b >= sz) {
                continue;
            }
            while (mapping.count(last)) {
                last--;
            }
            mapping[b] = last;
            last--;
        }
    }

    // 见上文代码实现
    int pick() {}
};

至此,这道题也解决了,总结一下本文的核心思想:

1、如果想高效地,等概率地随机获取元素,就要使用数组作为底层容器。

2、如果要保持数组元素的紧凑性,可以把待删除元素换到最后,然后 pop 掉末尾的元素,这样时间复杂度就是 O(1) 了。当然,我们需要额外的哈希表记录值到索引的映射。

3、对于第二题,数组中含有「空洞」(黑名单数字),也可以利用哈希表巧妙处理映射关系,让数组在逻辑上是紧凑的,方便随机取元素。

相关推荐:

_____________

点击 我的主页 看更多优质文章

posted @ 2020-11-14 22:50  labuladong  阅读(1195)  评论(0编辑  收藏  举报
我的公众号 labuladong,专注于 LeetCode 刷题,欢迎关注。