接雨水问题详解

接雨水这道题目挺有意思,在面试题中出现频率还挺高的,本文就来步步优化,讲解一下这道题。

先看一下题目:

就是用一个数组表示一个条形图,问你这个条形图最多能接多少水。

int trap(int[] height);

下面就来由浅入深介绍暴力解法 -> 备忘录解法 -> 双指针解法,在 O(N) 时间 O(1) 空间内解决这个问题。

一、核心思路

我第一次看到这个问题,无计可施,完全没有思路,相信很多朋友跟我一样。所以对于这种问题,我们不要想整体,而应该去想局部;就像之前的文章处理字符串问题,不要考虑如何处理整个字符串,而是去思考应该如何处理每一个字符。

这么一想,可以发现这道题的思路其实很简单。具体来说,仅仅对于位置 i,能装下多少水呢?

能装 2 格水。为什么恰好是两格水呢?因为 height[i] 的高度为 0,而这里最多能盛 2 格水,2-0=2。

为什么位置 i 最多能盛 2 格水呢?因为,位置 i 能达到的水柱高度和其左边的最高柱子、右边的最高柱子有关,我们分别称这两个柱子高度为 l_maxr_max位置 i 最大的水柱高度就是 min(l_max, r_max)

更进一步,对于位置 i,能够装的水为:

water[i] = min(
               # 左边最高的柱子
               max(height[0..i]),  
               # 右边最高的柱子
               max(height[i..end]) 
            ) - height[i]
    

这就是本问题的核心思路,我们可以简单写一个暴力算法:

int trap(vector<int>& height) {
    int n = height.size();
    int ans = 0;
    for (int i = 1; i < n - 1; i++) {
        int l_max = 0, r_max = 0;
        // 找右边最高的柱子
        for (int j = i; j < n; j++)
            r_max = max(r_max, height[j]);
        // 找左边最高的柱子
        for (int j = i; j >= 0; j--)
            l_max = max(l_max, height[j]);
        // 如果自己就是最高的话,
        // l_max == r_max == height[i]
        ans += min(l_max, r_max) - height[i];
    }
    return ans;
}

有之前的思路,这个解法应该是很直接粗暴的,时间复杂度 O(N^2),空间复杂度 O(1)。但是很明显这种计算 r_maxl_max 的方式非常笨拙,一般的优化方法就是备忘录。

二、备忘录优化

之前的暴力解法,不是在每个位置 i 都要计算 r_maxl_max 吗?我们直接把结果都缓存下来,别傻不拉几的每次都遍历,这时间复杂度不就降下来了嘛。

我们开两个数组 r_maxl_max 充当备忘录,l_max[i] 表示位置 i 左边最高的柱子高度,r_max[i] 表示位置 i 右边最高的柱子高度。预先把这两个数组计算好,避免重复计算:

int trap(vector<int>& height) {
    if (height.empty()) return 0;
    int n = height.size();
    int ans = 0;
    // 数组充当备忘录
    vector<int> l_max(n), r_max(n);
    // 初始化 base case
    l_max[0] = height[0];
    r_max[n - 1] = height[n - 1];
    // 从左向右计算 l_max
    for (int i = 1; i < n; i++)
        l_max[i] = max(height[i], l_max[i - 1]);
    // 从右向左计算 r_max
    for (int i = n - 2; i >= 0; i--) 
        r_max[i] = max(height[i], r_max[i + 1]);
    // 计算答案
    for (int i = 1; i < n - 1; i++) 
        ans += min(l_max[i], r_max[i]) - height[i];
    return ans;
}

这个优化其实和暴力解法差不多,就是避免了重复计算,把时间复杂度降低为 O(N),已经是最优了,但是空间复杂度是 O(N)。下面来看一个精妙一些的解法,能够把空间复杂度降低到 O(1)。

三、双指针解法

这种解法的思路是完全相同的,但在实现手法上非常巧妙,我们这次也不要用备忘录提前计算了,而是用双指针边走边算,节省下空间复杂度。

首先,看一部分代码:

int trap(vector<int>& height) {
    int n = height.size();
    int left = 0, right = n - 1;
    
    int l_max = height[0];
    int r_max = height[n - 1];
    
    while (left <= right) {
        l_max = max(l_max, height[left]);
        r_max = max(r_max, height[right]);
        left++; right--;
    }
}

对于这部分代码,请问 l_maxr_max 分别表示什么意义呢?

很容易理解,l_maxheight[0..left] 中最高柱子的高度,r_maxheight[right..end] 的最高柱子的高度

明白了这一点,直接看解法:

int trap(vector<int>& height) {
    if (height.empty()) return 0;
    int n = height.size();
    int left = 0, right = n - 1;
    int ans = 0;
    
    int l_max = height[0];
    int r_max = height[n - 1];
    
    while (left <= right) {
        l_max = max(l_max, height[left]);
        r_max = max(r_max, height[right]);
        
        // ans += min(l_max, r_max) - height[i]
        if (l_max < r_max) {
            ans += l_max - height[left];
            left++; 
        } else {
            ans += r_max - height[right];
            right--;
        }
    }
    return ans;
}

你看,其中的核心思想和之前一模一样,换汤不换药。但是细心的读者可能会发现次解法还是有点细节差异:

之前的备忘录解法,l_max[i]r_max[i] 代表的是 height[0..i]height[i..end] 的最高柱子高度。

ans += min(l_max[i], r_max[i]) - height[i];

但是双指针解法中,l_maxr_max 代表的是 height[0..left]height[right..end] 的最高柱子高度。比如这段代码:

if (l_max < r_max) {
    ans += l_max - height[left];
    left++; 
} 

此时的 l_maxleft 指针左边的最高柱子,但是 r_max 并不一定是 left 指针右边最高的柱子,这真的可以得到正确答案吗?

其实这个问题要这么思考,我们只在乎 min(l_max, r_max)。对于上图的情况,我们已经知道 l_max < r_max 了,至于这个 r_max 是不是右边最大的,不重要,重要的是 height[i] 能够装的水只和 l_max 有关。

我最近精心制作了一份电子书《labuladong的算法小抄》,分为【动态规划】【数据结构】【算法思维】【高频面试】四个章节,共 60 多篇原创文章,绝对精品!限时开放下载,在我的公众号 labuladong 后台回复关键词【pdf】即可免费下载!

目录

欢迎关注我的公众号 labuladong,技术公众号的清流,坚持原创,致力于把问题讲清楚!

labuladong

posted @ 2020-02-17 11:17  labuladong  阅读(2104)  评论(0编辑  收藏  举报
我的公众号 labuladong,专注于 LeetCode 刷题,欢迎关注。