《深入理解RocketMQ》- MQ消息的投递机制(转)

转自 https://blog.csdn.net/luanlouis/article/details/91368332

0. 前言

RocketMQ的消息投递分分为两种:一种是生产者往MQ Broker中投递;另外一种则是MQ broker 往消费者 投递(这种投递的说法是从消息传递的角度阐述的,实际上底层是消费者从MQ broker 中Pull拉取的)。本文将从模型的角度来阐述这两种机制。

1. RocketMQ的消息模型

RocketMQ 的消息模型整体并不复杂,如下图所示:

RocketMQ 消息模型

一个Topic(消息主题)可能对应多个实际的消息队列(MessgeQueue)
在底层实现上,为了提高MQ的可用性和灵活性,一个Topic在实际存储的过程中,采用了多队列的方式,具体形式如上图所示。每个消息队列在使用中应当保证先入先出(FIFO,First In First Out)的方式进行消费。
那么,基于这种模型,就会引申出两个问题:

  • 生产者 在发送相同Topic的消息时,消息体应当被放置到哪一个消息队列(MessageQueue)中?
  • 消费者 在消费消息时,应当从哪些消息队列中拉取消息?

消息的系统间传递时,会跨越不同的网络载体,这会导致消息的传播无法保证其有序请

2. 生产者(Producer)投递消息的策略

2.1 默认投递方式:基于Queue队列轮询算法投递

默认情况下,采用了最简单的轮询算法,这种算法有个很好的特性就是,保证每一个Queue队列的消息投递数量尽可能均匀,算法如下图所示:

/**
*  根据 TopicPublishInfo Topic发布信息对象中维护的index,每次选择队列时,都会递增
*  然后根据 index % queueSize 进行取余,达到轮询的效果
*
*/
public MessageQueue selectOneMessageQueue(final TopicPublishInfo tpInfo, final String lastBrokerName) {
        return tpInfo.selectOneMessageQueue(lastBrokerName);
}

/**
*  TopicPublishInfo Topic发布信息对象中
*/
public class TopicPublishInfo {
    //基于线程上下文的计数递增,用于轮询目的
    private volatile ThreadLocalIndex sendWhichQueue = new ThreadLocalIndex();
   

    public MessageQueue selectOneMessageQueue(final String lastBrokerName) {
        if (lastBrokerName == null) {
            return selectOneMessageQueue();
        } else {
            int index = this.sendWhichQueue.getAndIncrement();
            for (int i = 0; i < this.messageQueueList.size(); i++) {
                //轮询计算
                int pos = Math.abs(index++) % this.messageQueueList.size();
                if (pos < 0)
                    pos = 0;
                MessageQueue mq = this.messageQueueList.get(pos);
                if (!mq.getBrokerName().equals(lastBrokerName)) {
                    return mq;
                }
            }
            return selectOneMessageQueue();
        }
    }

    public MessageQueue selectOneMessageQueue() {
        int index = this.sendWhichQueue.getAndIncrement();
        int pos = Math.abs(index) % this.messageQueueList.size();
        if (pos < 0)
            pos = 0;
        return this.messageQueueList.get(pos);
    }
}

2.2 默认投递方式的增强:基于Queue队列轮询算法和消息投递延迟最小的策略投递

默认的投递方式比较简单,但是也暴露了一个问题,就是有些Queue队列可能由于自身数量积压等原因,可能在投递的过程比较长,对于这样的Queue队列会影响后续投递的效果。
基于这种现象,RocketMQ在每发送一个MQ消息后,都会统计一下消息投递的时间延迟,根据这个时间延迟,可以知道往哪些Queue队列投递的速度快。
在这种场景下,会优先使用消息投递延迟最小的策略,如果没有生效,再使用Queue队列轮询的方式。

public class MQFaultStrategy {
    /**
     * 根据 TopicPublishInfo 内部维护的index,在每次操作时,都会递增,
     * 然后根据 index % queueList.size(),使用了轮询的基础算法
     *
     */
    public MessageQueue selectOneMessageQueue(final TopicPublishInfo tpInfo, final String lastBrokerName) {
        if (this.sendLatencyFaultEnable) {
            try {
                // 从queueid 为 0 开始,依次验证broker 是否有效,如果有效
                int index = tpInfo.getSendWhichQueue().getAndIncrement();
                for (int i = 0; i < tpInfo.getMessageQueueList().size(); i++) {
                    //基于index和队列数量取余,确定位置
                    int pos = Math.abs(index++) % tpInfo.getMessageQueueList().size();
                    if (pos < 0)
                        pos = 0;
                    MessageQueue mq = tpInfo.getMessageQueueList().get(pos);
                    if (latencyFaultTolerance.isAvailable(mq.getBrokerName())) {
                        if (null == lastBrokerName || mq.getBrokerName().equals(lastBrokerName))
                            return mq;
                    }
                }
                
                // 从延迟容错broker列表中挑选一个容错性最好的一个 broker
                final String notBestBroker = latencyFaultTolerance.pickOneAtLeast();
                int writeQueueNums = tpInfo.getQueueIdByBroker(notBestBroker);
                if (writeQueueNums > 0) {
                     // 取余挑选其中一个队列
                    final MessageQueue mq = tpInfo.selectOneMessageQueue();
                    if (notBestBroker != null) {
                        mq.setBrokerName(notBestBroker);
                        mq.setQueueId(tpInfo.getSendWhichQueue().getAndIncrement() % writeQueueNums);
                    }
                    return mq;
                } else {
                    latencyFaultTolerance.remove(notBestBroker);
                }
            } catch (Exception e) {
                log.error("Error occurred when selecting message queue", e);
            }
          // 取余挑选其中一个队列
            return tpInfo.selectOneMessageQueue();
        }

        return tpInfo.selectOneMessageQueue(lastBrokerName);
    }
}

 

2.3 顺序消息的投递方式

上述两种投递方式属于对消息投递的时序性没有要求的场景,这种投递的速度和效率比较高。而在有些场景下,需要保证同类型消息投递和消费的顺序性。
例如,假设现在有TOPIC TOPIC_SALE_ORDER,该 Topic下有4个Queue队列,该Topic用于传递订单的状态变迁,假设订单有状态:未支付已支付发货中(处理中)发货成功发货失败
在时序上,生产者从时序上可以生成如下几个消息:
订单T0000001:未支付 --> 订单T0000001:已支付 --> 订单T0000001:发货中(处理中) --> 订单T0000001:发货失败
消息发送到MQ中之后,可能由于轮询投递的原因,消息在MQ的存储可能如下:
在这里插入图片描述

这种情况下,我们希望消费者消费消息的顺序和我们发送是一致的,然而,有上述MQ的投递和消费机制,我们无法保证顺序是正确的,对于顺序异常的消息,消费者 即使有一定的状态容错,也不能完全处理好这么多种随机出现组合情况。

基于上述的情况,RockeMQ采用了这种实现方案:对于相同订单号的消息,通过一定的策略,将其放置在一个 queue队列中,然后消费者再采用一定的策略(一个线程独立处理一个queue,保证处理消息的顺序性),能够保证消费的顺序性
在这里插入图片描述

至于消费者是如何保证消费的顺序行的,后续再详细展开,我们先看生产者是如何能将相同订单号的消息发送到同一个queue队列的:
生产者在消息投递的过程中,使用了 MessageQueueSelector 作为队列选择的策略接口,其定义如下:

package org.apache.rocketmq.client.producer;

import java.util.List;
import org.apache.rocketmq.common.message.Message;
import org.apache.rocketmq.common.message.MessageQueue;

public interface MessageQueueSelector {
        /**
         * 根据消息体和参数,从一批消息队列中挑选出一个合适的消息队列
         * @param mqs  待选择的MQ队列选择列表
         * @param msg  待发送的消息体
         * @param arg  附加参数
         * @return  选择后的队列
         */
        MessageQueue select(final List<MessageQueue> mqs, final Message msg, final Object arg);
}

 

相应地,目前RocketMQ提供了如下几种实现:
在这里插入图片描述
默认实现:

投递策略策略实现类说明
随机分配策略 SelectMessageQueueByRandom 使用了简单的随机数选择算法
基于Hash分配策略 SelectMessageQueueByHash 根据附加参数的Hash值,按照消息队列列表的大小取余数,得到消息队列的index
基于机器机房位置分配策略 SelectMessageQueueByMachineRoom 开源的版本没有具体的实现,基本的目的应该是机器的就近原则分配

现在大概看下策略的代码实现:

public class SelectMessageQueueByHash implements MessageQueueSelector {

    @Override
    public MessageQueue select(List<MessageQueue> mqs, Message msg, Object arg) {
        int value = arg.hashCode();
        if (value < 0) {
            value = Math.abs(value);
        }

        value = value % mqs.size();
        return mqs.get(value);
    }
}

 

实际的操作代码样例如下,通过订单号作为hash运算对象,就能保证相同订单号的消息能够落在相同的queue队列上

rocketMQTemplate.asyncSendOrderly(saleOrderTopic + ":" + tag, msg,saleOrderId /*传入订单号作为hash运算对象*/, new SendCallback() {
            @Override
            public void onSuccess(SendResult sendResult) {
                log.info("SALE ORDER NOTIFICATION SUCCESS:{}",sendResult.getMsgId());
            }
            @Override
            public void onException(Throwable throwable) {
                 //exception happens
            }
        });

 


3. 如何为消费者分配queue队列?

RocketMQ对于消费者消费消息有两种形式:

  • BROADCASTING:广播式消费,这种模式下,一个消息会被通知到每一个消费者
  • CLUSTERING: 集群式消费,这种模式下,一个消息最多只会被投递到一个消费者上进行消费
    模式如下:
    在这里插入图片描述

广播式的消息模式比较简单,下面我们介绍下集群式。对于使用了消费模式为MessageModel.CLUSTERING进行消费时,需要保证一个消息在整个集群中只需要被消费一次。实际上,在RoketMQ底层,消息指定分配给消费者的实现,是通过queue队列分配给消费者的方式完成的:也就是说,消息分配的单位是消息所在的queue队列。即:

queue队列指定给特定的消费者后,queue队列内的所有消息将会被指定到消费者进行消费。

RocketMQ定义了策略接口AllocateMessageQueueStrategy,对于给定的消费者分组,和消息队列列表消费者列表当前消费者应当被分配到哪些queue队列,定义如下:

/**
 * 为消费者分配queue的策略算法接口
 */
public interface AllocateMessageQueueStrategy {

    /**
     * Allocating by consumer id
     *
     * @param consumerGroup 当前 consumer群组
     * @param currentCID 当前consumer id
     * @param mqAll 当前topic的所有queue实例引用
     * @param cidAll 当前 consumer群组下所有的consumer id set集合
     * @return 根据策略给当前consumer分配的queue列表
     */
    List<MessageQueue> allocate(
        final String consumerGroup,
        final String currentCID,
        final List<MessageQueue> mqAll,
        final List<String> cidAll
    );

    /**
     * 算法名称
     *
     * @return The strategy name
     */
    String getName();
}

 

相应地,RocketMQ提供了如下几种实现:
在这里插入图片描述

算法名称含义
AllocateMessageQueueAveragely 平均分配算法
AllocateMessageQueueAveragelyByCircle 基于环形平均分配算法
AllocateMachineRoomNearby 基于机房临近原则算法
AllocateMessageQueueByMachineRoom 基于机房分配算法
AllocateMessageQueueConsistentHash 基于一致性hash算法
AllocateMessageQueueByConfig 基于配置分配算法

为了讲述清楚上述算法的基本原理,我们先假设一个例子,下面所有的算法将基于这个例子讲解。

假设当前同一个topic下有queue队列 10个,消费者共有4个,如下图所示:
在这里插入图片描述

下面依次介绍其原理:

3.1. AllocateMessageQueueAveragely- 平均分配算法

这里所谓的平均分配算法,并不是指的严格意义上的完全平均,如上面的例子中,10个queue,而消费者只有4个,无法是整除关系,除了整除之外的多出来的queue,将依次根据消费者的顺序均摊。
按照上述例子来看,10/4=2,即表示每个消费者平均均摊2个queue;而10%4=2,即除了均摊之外,多出来2个queue还没有分配,那么,根据消费者的顺序consumer-1consumer-2consumer-3consumer-4,则多出来的2个queue将分别给consumer-1consumer-2。最终,分摊关系如下:
consumer-1:3个;consumer-2:3个;consumer-3:2个;consumer-4:2个,如下图所示:
在这里插入图片描述
其代码实现非常简单:

public class AllocateMessageQueueAveragely implements AllocateMessageQueueStrategy {
    private final InternalLogger log = ClientLogger.getLog();

    @Override
    public List<MessageQueue> allocate(String consumerGroup, String currentCID, List<MessageQueue> mqAll,
        List<String> cidAll) {
        if (currentCID == null || currentCID.length() < 1) {
            throw new IllegalArgumentException("currentCID is empty");
        }
        if (mqAll == null || mqAll.isEmpty()) {
            throw new IllegalArgumentException("mqAll is null or mqAll empty");
        }
        if (cidAll == null || cidAll.isEmpty()) {
            throw new IllegalArgumentException("cidAll is null or cidAll empty");
        }

        List<MessageQueue> result = new ArrayList<MessageQueue>();
        if (!cidAll.contains(currentCID)) {
            log.info("[BUG] ConsumerGroup: {} The consumerId: {} not in cidAll: {}",
                consumerGroup,
                currentCID,
                cidAll);
            return result;
        }

        int index = cidAll.indexOf(currentCID);
        int mod = mqAll.size() % cidAll.size();
        int averageSize =
            mqAll.size() <= cidAll.size() ? 1 : (mod > 0 && index < mod ? mqAll.size() / cidAll.size()
                + 1 : mqAll.size() / cidAll.size());
        int startIndex = (mod > 0 && index < mod) ? index * averageSize : index * averageSize + mod;
        int range = Math.min(averageSize, mqAll.size() - startIndex);
        for (int i = 0; i < range; i++) {
            result.add(mqAll.get((startIndex + i) % mqAll.size()));
        }
        return result;
    }

    @Override
    public String getName() {
        return "AVG";
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43

3.2 AllocateMessageQueueAveragelyByCircle -基于环形平均算法

环形平均算法,是指根据消费者的顺序,依次在由queue队列组成的环形图中逐个分配。具体流程如下所示:
在这里插入图片描述
这种算法最终分配的结果是:
consumer-1: #0,#4,#8
consumer-2: #1, #5, # 9
consumer-3: #2,#6
consumer-4: #3,#7
其代码实现如下所示:

/**
 * Cycle average Hashing queue algorithm
 */
public class AllocateMessageQueueAveragelyByCircle implements AllocateMessageQueueStrategy {
    private final InternalLogger log = ClientLogger.getLog();

    @Override
    public List<MessageQueue> allocate(String consumerGroup, String currentCID, List<MessageQueue> mqAll,
        List<String> cidAll) {
        if (currentCID == null || currentCID.length() < 1) {
            throw new IllegalArgumentException("currentCID is empty");
        }
        if (mqAll == null || mqAll.isEmpty()) {
            throw new IllegalArgumentException("mqAll is null or mqAll empty");
        }
        if (cidAll == null || cidAll.isEmpty()) {
            throw new IllegalArgumentException("cidAll is null or cidAll empty");
        }

        List<MessageQueue> result = new ArrayList<MessageQueue>();
        if (!cidAll.contains(currentCID)) {
            log.info("[BUG] ConsumerGroup: {} The consumerId: {} not in cidAll: {}",
                consumerGroup,
                currentCID,
                cidAll);
            return result;
        }

        int index = cidAll.indexOf(currentCID);
        for (int i = index; i < mqAll.size(); i++) {
            if (i % cidAll.size() == index) {
                result.add(mqAll.get(i));
            }
        }
        return result;
    }

    @Override
    public String getName() {
        return "AVG_BY_CIRCLE";
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42

3.3 AllocateMachineRoomNearby-基于机房临近原则算法

该算法使用了装饰者设计模式,对分配策略进行了增强。一般在生产环境,如果是微服务架构下,RocketMQ集群的部署可能是在不同的机房中部署,其基本结构可能如下图所示:
在这里插入图片描述
对于跨机房的场景,会存在网络、稳定性和隔离心的原因,该算法会根据queue的部署机房位置和消费者consumer的位置,过滤出当前消费者consumer相同机房的queue队列,然后再结合上述的算法,如基于平均分配算法在queue队列子集的基础上再挑选。相关代码实现如下:

@Override
    public List<MessageQueue> allocate(String consumerGroup, String currentCID, List<MessageQueue> mqAll,
        List<String> cidAll) {
        //省略部分代码
        List<MessageQueue> result = new ArrayList<MessageQueue>();

        //将MQ按照 机房进行分组
        Map<String/*machine room */, List<MessageQueue>> mr2Mq = new TreeMap<String, List<MessageQueue>>();
        for (MessageQueue mq : mqAll) {
            String brokerMachineRoom = machineRoomResolver.brokerDeployIn(mq);
            if (StringUtils.isNoneEmpty(brokerMachineRoom)) {
                if (mr2Mq.get(brokerMachineRoom) == null) {
                    mr2Mq.put(brokerMachineRoom, new ArrayList<MessageQueue>());
                }
                mr2Mq.get(brokerMachineRoom).add(mq);
            } else {
                throw new IllegalArgumentException("Machine room is null for mq " + mq);
            }
        }

        //将消费者 按照机房进行分组
        Map<String/*machine room */, List<String/*clientId*/>> mr2c = new TreeMap<String, List<String>>();
        for (String cid : cidAll) {
            String consumerMachineRoom = machineRoomResolver.consumerDeployIn(cid);
            if (StringUtils.isNoneEmpty(consumerMachineRoom)) {
                if (mr2c.get(consumerMachineRoom) == null) {
                    mr2c.put(consumerMachineRoom, new ArrayList<String>());
                }
                mr2c.get(consumerMachineRoom).add(cid);
            } else {
                throw new IllegalArgumentException("Machine room is null for consumer id " + cid);
            }
        }

        List<MessageQueue> allocateResults = new ArrayList<MessageQueue>();

        //1.过滤出当前机房内的MQ队列子集,在此基础上使用分配算法挑选
        String currentMachineRoom = machineRoomResolver.consumerDeployIn(currentCID);
        List<MessageQueue> mqInThisMachineRoom = mr2Mq.remove(currentMachineRoom);
        List<String> consumerInThisMachineRoom = mr2c.get(currentMachineRoom);
        if (mqInThisMachineRoom != null && !mqInThisMachineRoom.isEmpty()) {
            allocateResults.addAll(allocateMessageQueueStrategy.allocate(consumerGroup, currentCID, mqInThisMachineRoom, consumerInThisMachineRoom));
        }

        //2.不在同一机房,按照一般策略进行操作
        for (String machineRoom : mr2Mq.keySet()) {
            if (!mr2c.containsKey(machineRoom)) { // no alive consumer in the corresponding machine room, so all consumers share these queues
                allocateResults.addAll(allocateMessageQueueStrategy.allocate(consumerGroup, currentCID, mr2Mq.get(machineRoom), cidAll));
            }
        }

        return allocateResults;
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53

3.4 AllocateMessageQueueByMachineRoom- 基于机房分配算法

该算法适用于属于同一个机房内部的消息,去分配queue。这种方式非常明确,基于上面的机房临近分配算法的场景,这种更彻底,直接指定基于机房消费的策略。这种方式具有强约定性,比如broker名称按照机房的名称进行拼接,在算法中通过约定解析进行分配。
其代码实现如下:

/**
 * Computer room Hashing queue algorithm, such as Alipay logic room
 */
public class AllocateMessageQueueByMachineRoom implements AllocateMessageQueueStrategy {
    private Set<String> consumeridcs;

    @Override
    public List<MessageQueue> allocate(String consumerGroup, String currentCID, List<MessageQueue> mqAll,
        List<String> cidAll) {
        List<MessageQueue> result = new ArrayList<MessageQueue>();
        int currentIndex = cidAll.indexOf(currentCID);
        if (currentIndex < 0) {
            return result;
        }
        List<MessageQueue> premqAll = new ArrayList<MessageQueue>();
        for (MessageQueue mq : mqAll) {
            String[] temp = mq.getBrokerName().split("@");
            if (temp.length == 2 && consumeridcs.contains(temp[0])) {
                premqAll.add(mq);
            }
        }

        int mod = premqAll.size() / cidAll.size();
        int rem = premqAll.size() % cidAll.size();
        int startIndex = mod * currentIndex;
        int endIndex = startIndex + mod;
        for (int i = startIndex; i < endIndex; i++) {
            result.add(mqAll.get(i));
        }
        if (rem > currentIndex) {
            result.add(premqAll.get(currentIndex + mod * cidAll.size()));
        }
        return result;
    }

    @Override
    public String getName() {
        return "MACHINE_ROOM";
    }

    public Set<String> getConsumeridcs() {
        return consumeridcs;
    }

    public void setConsumeridcs(Set<String> consumeridcs) {
        this.consumeridcs = consumeridcs;
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47

3.5 AllocateMessageQueueConsistentHash基于一致性hash算法

使用这种算法,会将consumer消费者作为Node节点构造成一个hash环,然后queue队列通过这个hash环来决定被分配给哪个consumer消费者
其基本模式如下:
在这里插入图片描述

什么是一致性hash 算法 ?
一致性hash算法用于在分布式系统中,保证数据的一致性而提出的一种基于hash环实现的算法,限于文章篇幅,不在这里展开描述,有兴趣的同学可以参考下 别人的博文:一致性哈希算法原理

算法实现上也不复杂,如下图所示:

public List<MessageQueue> allocate(String consumerGroup, String currentCID, List<MessageQueue> mqAll,
        List<String> cidAll) {
        //省略部分代码
        List<MessageQueue> result = new ArrayList<MessageQueue>();
        if (!cidAll.contains(currentCID)) {
            log.info("[BUG] ConsumerGroup: {} The consumerId: {} not in cidAll: {}",
                consumerGroup,
                currentCID,
                cidAll);
            return result;
        }

        Collection<ClientNode> cidNodes = new ArrayList<ClientNode>();
        for (String cid : cidAll) {
            cidNodes.add(new ClientNode(cid));
        }
//使用consumer id 构造hash环
        final ConsistentHashRouter<ClientNode> router; //for building hash ring
        if (customHashFunction != null) {
            router = new ConsistentHashRouter<ClientNode>(cidNodes, virtualNodeCnt, customHashFunction);
        } else {
            router = new ConsistentHashRouter<ClientNode>(cidNodes, virtualNodeCnt);
        }
        //依次为 队列分配 consumer
        List<MessageQueue> results = new ArrayList<MessageQueue>();
        for (MessageQueue mq : mqAll) {
            ClientNode clientNode = router.routeNode(mq.toString());
            if (clientNode != null && currentCID.equals(clientNode.getKey())) {
                results.add(mq);
            }
        }

        return results;

    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35

3.6 AllocateMessageQueueByConfig–基于配置分配算法

这种算法单纯基于配置的,非常简单,实际使用中可能用途不大。代码如下:

public class AllocateMessageQueueByConfig implements AllocateMessageQueueStrategy {
    private List<MessageQueue> messageQueueList;

    @Override
    public List<MessageQueue> allocate(String consumerGroup, String currentCID, List<MessageQueue> mqAll,
        List<String> cidAll) {
        return this.messageQueueList;
    }

    @Override
    public String getName() {
        return "CONFIG";
    }

    public List<MessageQueue> getMessageQueueList() {
        return messageQueueList;
    }

    public void setMessageQueueList(List<MessageQueue> messageQueueList) {
        this.messageQueueList = messageQueueList;
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

3.7 消费者如何指定分配算法?

默认情况下,消费者使用的是AllocateMessageQueueAveragely算法,也可以自己指定:

public class DefaultMQPushConsumer{    
    /**
     * Default constructor.
     */
    public DefaultMQPushConsumer() {
        this(MixAll.DEFAULT_CONSUMER_GROUP, null, new AllocateMessageQueueAveragely());
    }

    /**
     * Constructor specifying consumer group, RPC hook and message queue allocating algorithm.
     *
     * @param consumerGroup Consume queue.
     * @param rpcHook RPC hook to execute before each remoting command.
     * @param allocateMessageQueueStrategy message queue allocating algorithm.
     */
    public DefaultMQPushConsumer(final String consumerGroup, RPCHook rpcHook,
        AllocateMessageQueueStrategy allocateMessageQueueStrategy) {
        this.consumerGroup = consumerGroup;
        this.allocateMessageQueueStrategy = allocateMessageQueueStrategy;
        defaultMQPushConsumerImpl = new DefaultMQPushConsumerImpl(this, rpcHook);
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

4. 结束语

以上是从设计上简单介绍了RocketMQ的投递机制

posted on 2021-02-18 08:47  pcant  阅读(423)  评论(0编辑  收藏  举报