字节对齐

字节对齐有其中一条规则是这样说的:

结构体的总大小为结构体最宽(最大)基本类型成员大小的整数倍,如有需要编译器会在最末一个成员之后加上填充字节。(所以在vs下,sizeof查看大小的时候默认对齐大小是取最宽的数据类型的大小)

原因:
CPU 的访问粒度不仅仅是大小限制,地址上也有限制。也就是说,CPU 只能访问对齐地址上的固定长度的数据。
以四字节对齐为例,就是只能访问 0x0 - 0x3,0x4 - 0x7, 0x8 - 0xc 这样的(闭)区间,不能跨区间访问。
如果真正需要访问的数据并没有占据那个区间的全部字节范围,还有另外的信号线来指出具体操作哪几个字节,类似于掩码的作用。好像也有些架构干脆就不允许这种部分访问,强制要求按粒度访问。

如果一个数据跨越了两个这样的区间,那么就只能将这个数据的操作拆分成两部分,分别执行,效率当然就低了。
----------------------------------------------------------------------------------------------------------------------------------------
需要字节对齐的根本原因在于CPU访问数据的效率问题。假设上面整型变量的地址不是自然对齐,比如为0x00000002,则CPU如果取它的值的话需要访 问两次内存,第一次取从0x00000002-0x00000003的一个short,第二次取从0x00000004-0x00000005的一个 short然后组合得到所要的数据,如果变量在0x00000003地址上的话则要访问三次内存,第一次为char,第二次为short,第三次为 char,然后组合得到整型数据。而如果变量在自然对齐位置上,则只要一次就可以取出数据。

解决这个问题的一个办法就是强制数据对齐,现在假设一个 16 字节对齐的系统(稍微新一点的 x86 架构应该都是 16 字节对齐)。

百度上的对齐原因:

1、平台原因(移植原因):不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
2、性能原因:数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。

 

对齐规则

每个特定平台上的编译器都有自己的默认“对齐系数”(也叫对齐模数)。程序员可以通过预编译命令#pragma pack(n),n=1,2,4,8,16来改变这一系数,其中的n就是你要指定的“对齐系数”。
也可以用过__attribute__选项来指定对齐系数。
规则:
1、数据成员对齐规则:结构(struct)(或联合(union))的数据成员,第一个数据成员放在offset为0的地方,以后每个数据成员的对齐按照#pragma pack指定的数值和这个数据成员自身长度中,比较小的那个进行。
2、结构(或联合)的整体对齐规则:在数据成员完成各自对齐之后,结构(或联合)本身也要进行对齐,对齐将按照#pragma pack指定的数值和结构(或联合)最大数据成员长度中,比较小的那个进行。
3、结合1、2可推断:当#pragma pack的n值等于或超过所有数据成员长度的时候,这个n值的大小将不产生任何效果。
Win32平台下的微软C编译器(cl.exefor 80×86)的对齐策略:
1)结构体变量的首地址是其最长基本类型成员的整数倍;
备注:编译器在给结构体开辟空间时,首先找到结构体中最宽的基本数据类型,然后寻找内存地址能是该基本数据类型的整倍的位置,作为结构体的首地址。将这个最宽的基本数据类型的大小作为上面介绍的对齐模数。
2)结构体每个成员相对于结构体首地址的偏移量(offset)都是成员大小的整数倍,如有需要编译器会在成员之间加上填充字节(internal adding);
备注:为结构体的一个成员开辟空间之前,编译器首先检查预开辟空间的首地址相对于结构体首地址的偏移是否是本成员的整数倍,若是,则存放本成员,反之,则在本成员和上一个成员之间填充一定的字节,以达到整数倍的要求,也就是将预开辟空间的首地址后移几个字节。
3)结构体的总大小为结构体最宽基本类型成员大小的整数倍,如有需要,编译器会在最末一个成员之后加上填充字节(trailing padding)。
备注:结构体总大小是包括填充字节,最后一个成员满足上面两条以外,还必须满足第三条,否则就必须在最后填充几个字节以达到本条要求。
4) 结构体内类型相同的连续元素将在连续的空间内,和数组一样。
5) 如果结构体内存在长度大于处理器位数的元素,那么就以处理器的倍数为对齐单位;否则,如果结构体内的元素的长度都小于处理器的倍数的时候,便以结构体里面最长的数据元素为对齐单位。

验证试验

我们通过一系列例子的详细说明来证明这个规则吧!
我试验用的编译器包括GCC 3.4.2和VC6.0的C编译器,平台为Windows XP + Sp2。
我们将用典型的struct对齐来说明。首先我们定义一个struct:
#pragma pack(n) /* n = 1, 2, 4, 8, 16 */
struct test_t {
int a;
char b;
short c;
char d[6];
};
#pragma pack(n)

 

首先我们首先确认在试验平台上的各个类型的size,经验证两个编译器的输出均为:
sizeof(char) = 1
sizeof(short) = 2
sizeof(int) = 4
我们的试验过程如下:通过#pragma pack(n)改变“对齐系数”,然后察看sizeof(struct test_t)的值。
1、1字节对齐(#pragma pack(1))
输出结果:sizeof(struct test_t) = 13 [两个编译器输出一致]
分析过程:
 
1) 成员数据对齐
#pragma pack(1)
struct test_t {
int a; /* int型,长度4 > 1 按1对齐;起始offset=0 0%1=0;存放位置区间[0,3] */
char b; /* char型,长度1 = 1 按1对齐;起始offset=4 4%1=0;存放位置区间[4] */
short c; /* short型,长度2 > 1 按1对齐;起始offset=5 5%1=0;存放位置区间[5,6] */
char d[6]; /* char型,长度1 = 1 按1对齐;起始offset=7 7%1=0;存放位置区间[7,C] */
};/*char d[6]要看成6个char型变量*/
#pragma pack()
成员总大小=13
2) 整体对齐
整体对齐系数 = min((max(int,short,char), 1) = 1
整体大小(size)=$(成员总大小) 按 $(整体对齐系数) 圆整 = 13 /*13%1=0*/ [注1]
2、2字节对齐(#pragma pack(2))
输出结果:sizeof(struct test_t) = 14 [两个编译器输出一致]
分析过程:
 
1) 成员数据对齐
#pragma pack(2)
struct test_t {
int a; /* int型,长度4 > 2 按2对齐;起始offset=0 0%2=0;存放位置区间[0,3] */
char b; /* char型,长度1 < 2 按1对齐;起始offset=4 4%1=0;存放位置区间[4] */
short c; /* short型,长度2 = 2 按2对齐;起始offset=6 6%2=0;存放位置区间[6,7] */
char d[6]; /* char型,长度1 < 2 按1对齐;起始offset=8 8%1=0;存放位置区间[8,D] */
};
#pragma pack()

 

成员总大小=14
 
2) 整体对齐
整体对齐系数 = min((max(int,short,char), 2) = 2
整体大小(size)=$(成员总大小) 按 $(整体对齐系数) 圆整 = 14 /* 14%2=0 */
3、4字节对齐(#pragma pack(4))
输出结果:sizeof(struct test_t) = 16 [两个编译器输出一致]
分析过程:
 
1) 成员数据对齐
#pragma pack(4)
struct test_t {
int a; /* int型,长度4 = 4 按4对齐;起始offset=0 0%4=0;存放位置区间[0,3] */
char b; /* char型,长度1 < 4 按1对齐;起始offset=4 4%1=0;存放位置区间[4] */
short c; /*short型, 长度2 < 4 按2对齐;起始offset=6 6%2=0;存放位置区间[6,7] */
char d[6]; /* char型,长度1 < 4 按1对齐;起始offset=8 8%1=0;存放位置区间[8,D] */
};
#pragma pack()
成员总大小=16
 
2) 整体对齐
整体对齐系数 = min((max(int,short,char), 4) = 4
整体大小(size)=$(成员总大小) 按 $(整体对齐系数) 圆整 = 16 /*16%4=0*/
4、8字节对齐(#pragma pack(8))
输出结果:sizeof(struct test_t) = 16 [两个编译器输出一致]
分析过程:
 
1) 成员数据对齐
#pragma pack(8)
struct test_t {
int a; /* int型,长度4 < 8 按4对齐;起始offset=0 0%4=0;存放位置区间[0,3] */
char b; /* char型,长度1 < 8 按1对齐;起始offset=4 4%1=0;存放位置区间[4] */
short c; /* short型,长度2 < 8 按2对齐;起始offset=6 6%2=0;存放位置区间[6,7] */
char d[6]; /* char型,长度1 < 8 按1对齐;起始offset=8 8%1=0;存放位置区间[8,D] */
};
#pragma pack()
成员总大小=16
 
2) 整体对齐
整体对齐系数 = min((max(int,short,char), 8) = 4
整体大小(size)=$(成员总大小) 按 $(整体对齐系数) 圆整 = 16 /*16%4=0*/
5、16字节对齐(#pragma pack(16))
输出结果:sizeof(struct test_t) = 16 [两个编译器输出一致]
分析过程:
 
1) 成员数据对齐
#pragma pack(16)
struct test_t {
int a; /* int型,长度4 < 16 按4对齐;起始offset=0 0%4=0;存放位置区间[0,3] */
char b; /* char型,长度1 < 16 按1对齐;起始offset=4 4%1=0;存放位置区间[4] */
short c; /* short型,长度2 < 16 按2对齐;起始offset=6 6%2=0;存放位置区间[6,7] */
char d[6]; /* char型,长度1 < 16 按1对齐;起始offset=8 8%1=0;存放位置区间[8,D] */
};
#pragma pack()
成员总大小=16
 
2) 整体对齐
整体对齐系数 = min((max(int,short,char), 16) = 4
整体大小(size)=$(成员总大小) 按 $(整体对齐系数) 圆整 = 16  /* 16%4=0 */
--------------------------------------------------------------------------------------------------------------------------------------
 我们可以按照自己设定的对齐大小来编译程序,GNU使用__attribute__选项来设置,比如我们想让刚才的结构按一字节对齐,我们可以这样定义结构体
  
  struct stu{
   char sex;
   int length;
   char name[10];
  }__attribute__ ((aligned (1)));
  
  struct stu my_stu;
  
  则sizeof(my_stu)可以得到大小为15。
  
  上面的定义等同于
  
  struct stu{
   char sex;
   int length;
   char name[10];
  }__attribute__ ((packed));
  

struct stu my_stu;

__attribute__((packed))得变量或者结构体成员使用最小的对齐方式,即对变量是一字节对齐,对域(field)是位对齐.

 

本文来自:网络整理。

posted @ 2014-03-02 12:59  风华一指流砂,苍老一段年华  Views(158)  Comments(0Edit  收藏  举报