个人总结
Dijkstra算法的要点总结:
1.该算法需要两个重要的数据结合结构,集合S、T,S集合中存放已经找到最短路径的节点,T集合中则为S集合的补集,为还未找到阻断路径的节点集合
2.算法开始时将源点o放入S集合,并初始化各节点到源点的最短路径,如果之间不相通,距离为无穷大,否则,当前最短路径为到源点o的直接距离
3.整个算法过程为不断从T集合寻找当前最短路径的节点,并将其从T集合转移到S集合,直到T集合为空,算法结束
4.每次从T集合中提取当前最短路径的节点之后需要更新T集合中每个节点的当前最短路径,更新方法为:获取T中节点Ti,依次用S中的每个节点Si,将Si的最短路径长度加上Si到Ti的距离和与Ti直接到源点的距离做比较,如果距离和更小,则更新Ti的当前最短路径
5.总流程可表示为:集合S、T初始化----->提取T中最小路径节点放入S中------>更新T集合节点的当前最小路径 ,直到T集合为空,算法结束
定义
Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表的方式,这里均采用永久和临时标号的方式。注意该算法要求图中不存在负权边。
问题描述
在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径迪杰斯特拉算法
迪杰斯特拉(Dijkstra)算法思想 按路径长度递增次序产生最短路径算法: 把V分成两组: (1)S:已求出最短路径的顶点的集合 (2)V-S=T:尚未确定最短路径的顶点集合 将T中顶点按最短路径递增的次序加入到S中, 保证:(1)从源点V0到S中各顶点的最短路径长度都不大于 从V0到T中任何顶点的最短路径长度 (2)每个顶点对应一个距离值 S中顶点:从V0到此顶点的最短路径长度 T中顶点:从V0到此顶点的只包括S中顶点作中间 顶点的最短路径长度 依据:可以证明V0到T中顶点Vk的最短路径,或是从V0到Vk的 直接路径的权值;或是从V0经S中顶点到Vk的路径权值之和 (反证法可证) 求最短路径步骤 算法步骤如下: 1. 初使时令 S={V0},T={其余顶点},T中顶点对应的距离值 若存在<V0,Vi>,d(V0,Vi)为<V0,Vi>弧上的权值 若不存在<V0,Vi>,d(V0,Vi)为∝ 2. 从T中选取一个其距离值为最小的顶点W且不在S中,加入S 3. 对T中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi的 距离值比不加W的路径要短,则修改此距离值 重复上述步骤2、3,直到S中包含所有顶点,即S=T为止迪杰斯特拉算法的原理
首先,引进一个辅助向量D,它的每个分量D表示当前所找到的从始点v到每个终点vi的最短路径的长度。如D[3]=2表示从始点v到终点3的路径相对最小长度为2。这里强调相对就是说在算法过程中D的值是在不断逼近最终结果但在过程中不一定就等于最短路径长度。它的初始状态为:若从v到vi有弧,则D为弧上的权值;否则置D为∞。显然,长度为 D[j]=Min{D | vi∈V} 的路径就是从v出发的长度最短的一条最短路径。此路径为(v,vj)。 那么,下一条长度次短的最短路径是哪一条呢?假设该次短路径的终点是vk,则可想而知,这条路径或者是(v,vk),或者是(v,vj,vk)。它的长度或者是从v到vk的弧上的权值,或者是D[j]和从vj到vk的弧上的权值之和。 一般情况下,假设S为已求得最短路径的终点的集合,则可证明:下一条最短路径(设其终点为X)或者是弧(v,x),或者是中间只经过S中的顶点而最后到达顶点X的路径。因此,下一条长度次短的最短路径的长度必是D[j]=Min{D | vi∈V-S} 其中,D或者是弧(v,vi)上的权值,或者是D[k](vk∈S)和弧(vk,vi)上的权值之和。 迪杰斯特拉算法描述如下: 1)arcs表示弧上的权值。若不存在,则置arcs为∞(在本程序中为MAXCOST)。S为已找到从v出发的最短路径的终点的集合,初始状态为空集。那么,从v出发到图上其余各顶点vi可能达到的最短路径长度的初值为D=arcs[Locate Vex(G,v),i] vi∈V 2)选择vj,使得D[j]=Min{D | vi∈V-S} 3)修改从v出发到集合V-S上任一顶点vk可达的最短路径长度。Dijkstra算法讲解与C/C++实现
Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。 Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。 其基本思想是,设置顶点集合S并不断地作贪心选择来扩充这个集合。一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知。 初始时,S中仅含有源。设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S中,同时对数组dist作必要的修改。一旦S包含了所有V中顶点,dist就记录了从源到所有其它顶点之间的最短路径长度。 例如,对下图中的有向图,应用Dijkstra算法计算从源顶点1到其它顶点间最短路径的过程列在下表中。 主题好好理解上图! 以下是具体的实现(C/C++): /*************************************** * About: 有向图的Dijkstra算法实现 * Author: Tanky Woo ***************************************/ #include <iostream> using namespace std; const int maxnum = 100; const int maxint = 999999; // 各数组都从下标1开始 int dist[maxnum]; // 表示当前点到源点的最短路径长度 int prev[maxnum]; // 记录当前点的前一个结点 int c[maxnum][maxnum]; // 记录图的两点间路径长度 int n, line; // 图的结点数和路径数 // n -- n nodes // v -- the source node // dist[] -- the distance from the ith node to the source node // prev[] -- the previous node of the ith node // c[][] -- every two nodes' distance void Dijkstra(int n, int v, int *dist, int *prev, int c[maxnum][maxnum]) { bool s[maxnum]; // 判断是否已存入该点到S集合中 for(int i=1; i<=n; ++i) { dist[i] = c[v][i]; s[i] = 0; // 初始都未用过该点 if(dist[i] == maxint) prev[i] = 0; else prev[i] = v; } dist[v] = 0; s[v] = 1; // 依次将未放入S集合的结点中,取dist[]最小值的结点,放入结合S中 // 一旦S包含了所有V中顶点,dist就记录了从源点到所有其他顶点之间的最短路径长度 // 注意是从第二个节点开始,第一个为源点 for(int i=2; i<=n; ++i) { int tmp = maxint; int u = v; // 找出当前未使用的点j的dist[j]最小值 for(int j=1; j<=n; ++j) if((!s[j]) && dist[j]<tmp) { u = j; // u保存当前邻接点中距离最小的点的号码 tmp = dist[j]; } s[u] = 1; // 表示u点已存入S集合中 // 更新dist for(int j=1; j<=n; ++j) if((!s[j]) && c[u][j]<maxint) { int newdist = dist[u] + c[u][j]; if(newdist < dist[j]) { dist[j] = newdist; prev[j] = u; } } } } // 查找从源点v到终点u的路径,并输出 void searchPath(int *prev,int v, int u) { int que[maxnum]; int tot = 1; que[tot] = u; tot++; int tmp = prev[u]; while(tmp != v) { que[tot] = tmp; tot++; tmp = prev[tmp]; } que[tot] = v; for(int i=tot; i>=1; --i) if(i != 1) cout << que[i] << " -> "; else cout << que[i] << endl; } int main() { freopen("input.txt", "r", stdin); // 各数组都从下标1开始 // 输入结点数 cin >> n; // 输入路径数 cin >> line; int p, q, len; // 输入p, q两点及其路径长度 // 初始化c[][]为maxint for(int i=1; i<=n; ++i) for(int j=1; j<=n; ++j) c[i][j] = maxint; for(int i=1; i<=line; ++i) { cin >> p >> q >> len; if(len < c[p][q]) // 有重边 { c[p][q] = len; // p指向q c[q][p] = len; // q指向p,这样表示无向图 } } for(int i=1; i<=n; ++i) dist[i] = maxint; for(int i=1; i<=n; ++i) { for(int j=1; j<=n; ++j) printf("%8d", c[i][j]); printf("\n"); } Dijkstra(n, 1, dist, prev, c); // 最短路径长度 cout << "源点到最后一个顶点的最短路径长度: " << dist[n] << endl; // 路径 cout << "源点到最后一个顶点的路径为: "; searchPath(prev, 1, n); } 输入数据: 5 7 1 2 10 1 4 30 1 5 100 2 3 50 3 5 10 4 3 20 4 5 60 输出数据: 999999 10 999999 30 100 10 999999 50 999999 999999 999999 50 999999 20 10 30 999999 20 999999 60 100 999999 10 60 999999 源点到最后一个顶点的最短路径长度: 60 源点到最后一个顶点的路径为: 1 -> 4 -> 3 -> 5