能量谱密度 功率谱密度

 

以下内容转载自知乎,但经过了一定的修改。读者可通过下方链接访问原文。感谢原作者的回答!

作者:張無忌      链接:https://www.zhihu.com/question/29520851/answer/241700599     来源:知乎

作者:知乎用户    链接:https://www.zhihu.com/question/29520851/answer/139330300      来源:知乎

一.能量W,功率P的定义

  对于任意的时间信号 x(t) ,这个信号可以是任意随时间变化的物理量,在对信号进行能量分析时,不加区分地将其视为施加在阻值是单位电阻,即 R = 1Ω 的电阻上的电流。基于此,这个单位电阻的能量属性,就视为这个信号的能量属性。

  所以,信号的总能量 W 就是:

W=\lim_{T\rightarrow\infty}\int_{-T}^{T}I^2R{\rm d}t=\lim_{T\rightarrow\infty}\int_{-T}^{T}x^2(t){\rm d}t\\

  同时,能量也可以在频域表示:

W=\frac{1}{2\pi}\int_{-\infty}^{\infty}|X(\omega)|^2{\rm d}\omega,X(\omega)=\int_{-\infty}^{+\infty}x(t){\rm e}^{-{\rm j}{\omega}t}{\rm d}t\\

  相应地,信号的平均功率 P 就是:

P=\lim_{T\rightarrow\infty}\frac{1}{2T}\int_{-T}^{T}x^2(t){\rm d}t\\

   第一个极限存在,即称为 能量信号,若第二个极限存在,则称为 功率信号

        但是,一个信号可以既不是能量信号,也不是功率信号,但不可能既是能量信号,又是功率信号。

 

在频谱分析中幅度和功率是由紧密联系的两个不同的物理量:

    能量      :能表述为幅值的平方和,也能表述为功率在时间上的积分;

功率谱密度:是对随机变量均方值的量度,是单位频率的平均功率量纲;也就是说,对功率谱在频域上积分就可以得到信号的平均功率,而不是能量。

 

能量谱密度:是单位频率的幅值平方和量纲,能量谱密度曲线下面的面积才是这个信号的总能量。

 

于是,功率谱、能量谱、幅值谱之间的紧密关系主要表述为:
能量谱是功率谱密度函数在相位上的卷积,也是幅值谱密度函数的平方在频率上的积分;
功率谱是信号自相关函数的傅里叶变换,能量谱是信号本身傅立叶变换幅度的平方

 

 

一般地,若信号的总能量是有限的,用能量谱密度函数考察;若信号的总能量是无限的,但单位时间内的能量是有限的:比如周期信号,用功率谱密度函数考察

 

二、能量信号-能量谱

  如果信号是 能量信号,通过傅里叶变换,就很容易分离不同频域分量所对应的能量,频率 ω 对应的能量为: dW = |X(ω)|²d(ω/2π),对 ω 积分就能得到信号的总能量,由此, |X(ω)|² 就定义为 能量谱密度,也常简称为 能量谱,意为能量在某一频率上的分布集度或,量纲是 [U]²·sec/Hz [U]²·sec/(rad/sec)[U]x(t) 的量纲。

 

 

三、周期功率信号-功率谱密度G(ω) 

  这个是十分容易的,一个有限长时间的信号进行周期延拓得到。

  周期信号在时间上无始无终,能量必然是无限的,但功率可能是有限的。对信号进行傅里叶展开,可以写成:

x(t)=\sum_{n=1}^{\infty}A_n\sin(n\varOmega_0t+\varphi_n),\ \varOmega_0=\frac{2\pi}{T_0}\\

  或表示为复指数形式,频谱函数Cn是离散的

x(t)=\sum_{n=-\infty}^{+\infty}c_n{\rm e}^{{\rm j}n\varOmega_0t}\\

  周期信号的平均功率只需要取一个周期进行能量平均即可得到,也即:

P=\frac{1}{T_0}\int_{0}^{T_0}x^2(t){\rm d}t=\frac{1}{T_0}\int_{0}^{T_0}[\sum_{n=1}^{\infty}A_n\sin(n\varOmega_0t+\varphi_n)]^2{\rm d}t\\

  或:

P=\frac{1}{T_0}\int_{0}^{T_0}(\sum_{n=-\infty}^{+\infty}c_n{\rm e}^{{\rm j}n\varOmega_0t})^2{\rm d}t\\

  利用二项式展开以及三角函数系的正交性,不难化简上式:

P=\sum_{n=1}^{\infty}(A_n^2/2)=\sum_{n=1}^{\infty}P_n\\

  或

P=\sum_{n=-\infty}^{+\infty}(|c_n|^2/2)=\sum_{n=-\infty}^{+\infty}P^*_n\\

An 是周期信号中频率为 的谐波分量的幅值,Pn = An²/2 是频率为 的谐波分量的功率。

所以结论就是:周期信号的平均功率等于各谐波分量幅值的平方和

容易理解,周期信号的功率是离散地分布在频率为基频 Ω整数倍的谐波分量上的。

  如果以频率为横坐标,功率 Pn 为纵坐标,就可以得到功率随频率的分布。容易观察到,周期信号的功率谱频率分布是离散的,等间隔的,间隔长度就是基频 Ω₀ = 2π/T如果将 Pn 在区间 [₀, (n+1)Ω₀] 平均化为 Pn/Ω₀ ,就可以得到一条频率连续的分布曲线 G(ω) ,其意义就是频率 ω 上的功率密度,也就是所谓的 功率谱密度,量纲是 [U]²/Hz

功率谱密度曲线的对频率积分就等于平均功率 P,即:

P=\int_{0}^{+\infty}G(\omega){\rm d}\omega\\

  实际上,如果引入冲击函数 δ(·),功率对频率微分也可得到周期信号的功率谱密度,功率谱密度在基频整数倍为脉冲形式,即 G(ω) = ΣPnδ(ω-nΩ₀),同样满足功率谱密度的积分就等于平均功率 P

  以三角函数对功率展开, 幅值 An 为实数,n 仅取正值,功率谱密度 G(ω) 为单边功率谱,如果以复指函数形式对功率展开,系数 Cn 为复数,而 n 取全体整数,功率谱密度 S(ω) 为双边功率谱,二者关系为:An = 2|Cn| = 2|C₋n|,G(ω) = 2S(ω)

 

 

四、非周期功率信号

        如平稳随机过程。非周期信号可以用周期信号的思路来推广,相当于周期信号中的周期 T₀ → ∞

  周期趋近于无穷意味着基频(离散谐波的频率分布间隔) Ω₀ → 0 ,离散的谐波功率谱线趋于连续。同时,傅里叶系数 An 也趋于 0,也就是说,在谐波功率谱线的图形中,所有频率的谱值 Pn 都是无穷小,注意到,功率谱的频率密度 G(ω) = Pn/Ω却为有限值,可以用于描述功率的频率分布。

  通过对信号的截断也容易理解非周期信号的功率谱密度。功率信号 x(t) 无法直接进行傅里叶变换,但通过对信号截断,则截断后的 [-T, T] 上有限时长的信号 x₀(t)则为能量信号,可进行傅里叶变换,得到截断信号 x₀(t) 能量的频率表示 |X₀(ω)|²。随着截断时间 2T 趋于无穷,截断信号 x₀(t) 逼近功率信号 x(t),能量谱密度 |X₀(ω)|² 趋于无穷,而其时间平均则为有限值,也即功率谱密度 G(ω) = lim(1/2T)|X₀(ω)|²

 

 

 

posted @ 2018-04-08 18:39  Aurora_l  阅读(5538)  评论(0编辑  收藏  举报