ElasticSearch结构化查询

Elasticsearch 提供了丰富的查询过滤语句,而有一些是我们较常用到的。
现在我们快速的介绍一下 这些最常用到的查询过滤语句。

term 过滤

term主要用于精确匹配哪些值,比如数字,日期,布尔值或 not_analyzed的字符串(未经分析的文本数据类型):

    { "term": { "age":    26           }}
    { "term": { "date":   "2014-09-01" }}
    { "term": { "public": true         }}
    { "term": { "tag":    "full_text"  }}

terms 过滤

terms 跟 term 有点类似,但 terms 允许指定多个匹配条件。 如果某个字段指定了多个值,那么文档需要一起去做匹配:

{
    "terms": {
        "tag": [ "search", "full_text", "nosql" ]
        }
}

range 过滤

range过滤允许我们按照指定范围查找一批数据:

{
    "range": {
        "age": {
            "gte":  20,
            "lt":   30
        }
    }
}

范围操作符包含:

gt :: 大于

gte:: 大于等于

lt :: 小于

lte:: 小于等于

exists 和 missing 过滤

exists 和 missing 过滤可以用于查找文档中是否包含指定字段或没有某个字段,类似于SQL语句中的IS_NULL条件

{
    "exists":   {
        "field":    "title"
    }
}

这两个过滤只是针对已经查出一批数据来,但是想区分出某个字段是否存在的时候使用。

bool 过滤

bool 过滤可以用来合并多个过滤条件查询结果的布尔逻辑,它包含一下操作符:

must :: 多个查询条件的完全匹配,相当于 and

must_not :: 多个查询条件的相反匹配,相当于 not

should :: 至少有一个查询条件匹配, 相当于 or

这些参数可以分别继承一个过滤条件或者一个过滤条件的数组:

{
    "bool": {
        "must":     { "term": { "folder": "inbox" }},
        "must_not": { "term": { "tag":    "spam"  }},
        "should": [
                    { "term": { "starred": true   }},
                    { "term": { "unread":  true   }}
        ]
    }
}

match_all 查询

使用match_all 可以查询到所有文档,是没有查询条件下的默认语句。

{
    "match_all": {}
}

此查询常用于合并过滤条件。 比如说你需要检索所有的邮箱,所有的文档相关性都是相同的,所以得到的_score为1

match 查询

match查询是一个标准查询,不管你需要全文本查询还是精确查询基本上都要用到它。

如果你使用 match 查询一个全文本字段,它会在真正查询之前用分析器先分析match一下查询字符:

{
    "match": {
        "tweet": "About Search"
    }
}

如果用match下指定了一个确切值,在遇到数字,日期,布尔值或者not_analyzed 的字符串时,它将为你搜索你给定的值:

{ "match": { "age":    26           }}
{ "match": { "date":   "2014-09-01" }}
{ "match": { "public": true         }}
{ "match": { "tag":    "full_text"  }}

提示: 做精确匹配搜索时,你最好用过滤语句,因为过滤语句可以缓存数据。

不像我们在《简单搜索》中介绍的字符查询,match查询不可以用类似"+usid:2 +tweet:search"这样的语句。 它只能就指定某个确切字段某个确切的值进行搜索,而你要做的就是为它指定正确的字段名以避免语法错误。

multi_match 查询

multi_match查询允许你做match查询的基础上同时搜索多个字段:

{
    "multi_match": {
        "query":    "full text search",
        "fields":   [ "title", "body" ]
    }
}

bool 查询

bool 查询与 bool 过滤相似,用于合并多个查询子句。不同的是,bool 过滤可以直接给出是否匹配成功, 而bool 查询要计算每一个查询子句的 _score (相关性分值)。

must:: 查询指定文档一定要被包含。

must_not:: 查询指定文档一定不要被包含。

should:: 查询指定文档,有则可以为文档相关性加分。

以下查询将会找到 title 字段中包含 "how to make millions",并且 "tag" 字段没有被标为 spam。 如果有标识为 "starred" 或者发布日期为2014年之前,那么这些匹配的文档将比同类网站等级高:

{
    "bool": {
        "must":     { "match": { "title": "how to make millions" }},
        "must_not": { "match": { "tag":   "spam" }},
        "should": [
            { "match": { "tag": "starred" }},
            { "range": { "date": { "gte": "2014-01-01" }}}
        ]
    }
}

提示: 如果bool 查询下没有must子句,那至少应该有一个should子句。但是 如果有must子句,那么没有should子句也可以进行查询。

 

 

查询与过滤条件的合并

 

查询语句和过滤语句可以放在各自的上下文中。 在 ElasticSearch API 中我们会看到许多带有 query 或filter 的语句。 这些语句既可以包含单条 query 语句,也可以包含一条 filter 子句。 换句话说,这些语句需要首先创建一个queryfilter的上下文关系。

复合查询语句可以加入其他查询子句,复合过滤语句也可以加入其他过滤子句。 通常情况下,一条查询语句需要过滤语句的辅助,全文本搜索除外。

所以说,查询语句可以包含过滤子句,反之亦然。 以便于我们切换 query 或 filter 的上下文。这就要求我们在读懂需求的同时构造正确有效的语句。

带过滤的查询语句

过滤一条查询语句

比如说我们有这样一条查询语句:

{
    "match": {
        "email": "business opportunity"
    }
}

然后我们想要让这条语句加入 term 过滤,在收信箱中匹配邮件:

{
    "term": {
        "folder": "inbox"
    }
}

search API中只能包含 query 语句,所以我们需要用 filtered 来同时包含 "query" 和 "filter" 子句:

{
    "filtered": {
        "query":  { "match": { "email": "business opportunity" }},
        "filter": { "term":  { "folder": "inbox" }}
    }
}

我们在外层再加入 query 的上下文关系:

GET /_search
{
    "query": {
        "filtered": {
            "query":  { "match": { "email": "business opportunity" }},
            "filter": { "term": { "folder": "inbox" }}
        }
    }
}

单条过滤语句

在 query 上下文中,如果你只需要一条过滤语句,比如在匹配全部邮件的时候,你可以 省略 query 子句:

GET /_search
{
    "query": {
        "filtered": {
            "filter":   { "term": { "folder": "inbox" }}
        }
    }
}

如果一条查询语句没有指定查询范围,那么它默认使用 match_all 查询,所以上面语句 的完整形式如下:

GET /_search
{
    "query": {
        "filtered": {
            "query":    { "match_all": {}},
            "filter":   { "term": { "folder": "inbox" }}
        }
    }
}

查询语句中的过滤

有时候,你需要在 filter 的上下文中使用一个 query 子句。下面的语句就是一条带有查询功能 的过滤语句, 这条语句可以过滤掉看起来像垃圾邮件的文档:

GET /_search
{
    "query": {
        "filtered": {
            "filter":   {
                "bool": {
                    "must":     { "term":  { "folder": "inbox" }},
                    "must_not": {
                        "query": { <1>
                            "match": { "email": "urgent business proposal" }
                        }
                    }
                }
            }
        }
    }
}

<1> 过滤语句中可以使用query查询的方式代替 bool 过滤子句。

提示: 我们很少用到的过滤语句中包含查询,保留这种用法只是为了语法的完整性。 只有在过滤中用到全文本匹配的时候才会使用这种结构。

 
posted @ 2017-02-08 21:41  L-xxx  阅读(213)  评论(0编辑  收藏  举报