关于Stream的使用

引言

  Stream 是 Java8 中处理集合的关键抽象概念,它可以指定你希望对集合进行的操作,可以执行非常复杂的查找、过滤和映射数据等操作。使用Stream API 对集合数据进行操作,就类似于使用 SQL 执行的数据库查询。也可以使用 Stream API 来并行执行操作。简而言之,Stream API 提供了一种高效且易于使用的处理数据的方式。

转自:https://blog.csdn.net/y_k_y/article/details/84633001

特点:

        1 . 不是数据结构,不会保存数据。

        2. 不会修改原来的数据源,它会将操作后的数据保存到另外一个对象中。(保留意见:毕竟peek方法可以修改流中元素)

        3. 惰性求值,流在中间处理过程中,只是对操作进行了记录,并不会立即执行,需要等到执行终止操作的时候才会进行实际的计算。

创建流

// 获取顺序流
Stream stream = new ArrayList().stream(); 
// 获取并行流
Stream parallelStream = new ArrayList().parallelStream(); 
// 数组转成流
Integer[] nums = {1,2,3};
Stream<Integer> streamArray = Arrays.stream(nums);

 

赋值

// of方法直接赋值
Stream<Integer> stream1 = Stream.of(1,2,3,4,5);
stream1.forEach(System.out::println); // 1 2 3 4 5
// iterate生成生成无限顺序有序流,主要作用是抽象迭代逻辑
Stream<Integer> stream2 = Stream.iterate(2, x -> x * 2).limit(5);
stream2.forEach(System.out::println); // 2 4 8 16 32
// generate生成无限顺序无序流,其中每个元素由提供的供应商生成。这适用于生成恒定流,随机元素流等。
Stream<Integer> stream3 = Stream.generate(new Random()::nextInt).limit(2);
stream3.forEach(System.out::println); //15356208 -2042159

 

筛选与切片

filter:过滤流中的某些元素 limit(n):获取n个元素 skip(n):跳过n元素 distinct:通过流中元素的 hashCode() 和 equals() 去除重复元素

Integer[] nums = {1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10};
Stream<Integer> streamArray = Arrays.stream(nums);
Stream<Integer> result = streamArray
        .distinct()  // 去重 1 2 3 4 5 6 7 8 9 10
        .filter(i -> (i > 2)) // 筛选出值>2的元素 3 4 5 6 7 8 9 10
        .skip(2) // 跳过前2个元素 5 6 7 8 9 10
        .limit(4); // 获取前4个元素 5 6 7 8

 

映射

map:接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素

Integer[] nums = {1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10};
Stream<Integer> streamArray = Arrays.stream(nums);
List<String> strings = streamArray
        .map(String::valueOf) // 通过String.valueOf()方法将各个元素转为字符串
        .collect(Collectors.toList()); // 将流转为List集合

flatMap:接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流

Stream<String> streamArray2 = Stream.of("1.2.3", "4.5.6", "7.8.9");
List<String> result = streamArray2
        .flatMap(s -> Arrays.stream(s.split("\\."))) //将流中的每个值都换成另一个流,然后分割
        .collect(Collectors.toList());
// 1 2 3 4 5 6 7 8 9

 

排序

sorted():自然排序,流中元素需实现Comparable接口

List<String> list = Arrays.asList("a", "d", "c", "b", "x");
List<String> result = list.stream()
  .sorted()
  .collect(Collectors.toList());
// a b c d x

sorted(Comparator com):定制排序,自定义Comparator排序器

Person s1 = new Person("aa", 10);
Person s2 = new Person("bb", 20);
Person s3 = new Person("aa", 30);
Person s4 = new Person("dd", 40);
List<Person> personList = Arrays.asList(s1, s2, s3, s4);
//自定义排序:先按姓名升序,姓名相同则按年龄升序
personList.stream().sorted(
      (o1, o2) -> {
           if (o1.getName().equals(o2.getName())) {
               return o1.getAge() - o2.getAge();
          } else {
               return o1.getName().compareTo(o2.getName());
          }
      }
).forEach(person -> System.out.println(person.getName()));

消费

peek:如同于map,能得到流中的每一个元素。但map接收的是一个Function表达式,有返回值;而peek接收的是Consumer表达式,没有返回值

Person s1 = new Person("aa", 10);
Person s2 = new Person("bb", 20);
Person s3 = new Person("aa", 30);
Person s4 = new Person("dd", 40);
List<Person> personList = Arrays.asList(s1, s2, s3, s4);
​
personList.stream()
        .peek(person -> person.setAge(100))
        .forEach(person -> System.out.println(person.getName()+":"+person.getAge()));

 

匹配

allMatch:接收一个 Predicate 函数,当流中每个元素都符合该断言时才返回true,否则返回false

List<Integer> integers = Arrays.asList(1, 2, 3, 4, 5);
// 里面的元素是否都满足>10这个条件
boolean result = integers.stream().allMatch(i -> i > 10); // false

noneMatch:接收一个 Predicate 函数,当流中每个元素都不符合该断言时才返回true,否则返回false

List<Integer> list = Arrays.asList(1, 2, 3, 4, 5);
// 里面的元素是否都 不 满足>10这个条件
boolean result = list.stream().noneMatch(i -> i > 10); // true

anyMatch:接收一个 Predicate 函数,只要流中存在元素满足该断言则返回true,否则返回false

List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 11);
// 里面的元素是否存在满足>10这个条件
boolean result = list.stream().anyMatch(i -> i > 10); // true

findFirst:返回流中第一个元素

List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 11);
// Optional对象常用于解决空指针问题
Optional<Integer> optional = list.stream().findFirst();
System.out.println(optional.get()); // 1

count:返回流中元素的总个数

List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 11);
Long result = list.stream().count();
System.out.println(result); // 6

max:返回流中元素最大值

List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 11);
Integer max = list.stream().max(Integer::compareTo).get(); // 11

min:返回流中元素最小值

List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 11);
Integer min = list.stream().min(Integer::compareTo).get(); // 1

 

reduce

Optional<T> reduce(BinaryOperator<T> accumulator)

List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6);
Optional<Integer> optional = list.stream().reduce((x1, x2) -> x1 + x2);
System.out.println(optional.get()); // 21(为流中元素的和)
// 等效于
// Optional<Integer> optional = list.stream().reduce(Integer::sum);

T reduce(T identity, BinaryOperator<T> accumulator)

identity:返回实例 accumulator:累加器

String[] strings = {"a", "b", "c", "d", "e"};
String reduce2 = Arrays.stream(strings).reduce("", (a, b) -> {
    if (!"".equals(a)) {
        return a + "|" + b;
    } else {
        return b;
    }
});
/**
 * 执行流程:
 * 第一个元素identity的值为"",因此a的初始值为"",b的初始值为流中第一个元素"a"
 * 第一次执行之后得到结果"a",然后执行结果的值赋给a,流中第二个元素的值"b"赋给b
 * 第二次执行之后得到结果"a|b",然后以此类推
 */
System.out.println(reduce2); // a|b|c|d|e

reduce(U identity,BiFunction<U, ? super T, U> accumulator,BinaryOperator<U> combiner)

identity:返回实例 accumulator:累加器 combiner:组合器

List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24);
Integer v2 = list.stream().reduce(0,
        (x1, x2) -> {
            System.out.println("stream accumulator: x1:" + x1 + "  x2:" + x2);
            return x1 - x2;
        },
        // 第三个参数---参数的数据类型必须为返回数据类型,改参数主要用于合并多个线程的result值
        //(Stream是支持并发操作的,为了避免竞争,对于reduce线程都会有独立的result)
        (x1, x2) -> {
            System.out.println("stream combiner: x1:" + x1 + "  x2:" + x2);
            return x1 * x2;
        });
System.out.println(v2); // -300

 

 

 

posted @ 2021-01-14 21:02  LonZyuan  阅读(533)  评论(0编辑  收藏  举报