esp32 espi库驱动 ili9481 测试xpt2046电阻屏触控功能
这次是驱动9481 买了屏一年后才搞明白 囧 踩了几个坑 这个屏vcc只能接3.3v 接5v无法使用 屏幕白屏过一会出现浅色圆圈
参考这位大神的帖子 数字城镇 - ESP32 配备 ILI9481 SPI 液晶触摸屏还是 ILI9486? (digitaltown.co.uk) 不过9481 9486 9488的3.5寸屏外观都是一模一样的 看不出来区别
9418的spi频率不高,默认的40m没反应 最后尝试用10m成功了
xpt2046的spi频率也不能太高,太高不准
setup.h的几个改动
// For ESP32 Dev board (only tested with ILI9341 display) // The hardware SPI can be mapped to any pins 针脚定义 #define TFT_MISO 19 #define TFT_MOSI 23 #define TFT_SCLK 22 #define TFT_CS 0 // Chip select control pin #define TFT_DC 2 // Data Command control pin #define TFT_RST 4 // Reset pin (could connect to RST pin) BL接3.3V // #define TFT_RST -1 // Set TFT_RST to -1 if display RESET is connected to ESP32 board RST #define TOUCH_CS 21 // Chip select pin (T_CS) of touch screen TCS针脚接esp32 的21
触控的TCS接31,其他几个针脚跟屏幕的并联起来 pen(中断)不接
// #define SPI_FREQUENCY 1000000 // #define SPI_FREQUENCY 5000000 // #define SPI_FREQUENCY 10000000 #define SPI_FREQUENCY 15999999 // #define SPI_FREQUENCY 20000000 // #define SPI_FREQUENCY 27000000 // #define SPI_FREQUENCY 40000000 //如果有问题可以尝试降低频率 经过尝试用15.9M是spi的极限了 // #define SPI_FREQUENCY 55000000 // STM32 SPI1 only (SPI2 maximum is 27MHz) // #define SPI_FREQUENCY 80000000 // Optional reduced SPI frequency for reading TFT #define SPI_READ_FREQUENCY 20000000 // The XPT2046 requires a lower SPI clock rate of 2.5MHz so we define that here: #define SPI_TOUCH_FREQUENCY 600000 //这里只用600k的spi clock频率 再高测试触摸位置不准
最终针脚接法
vcc 3.3v
gnd gnd
cs 0
rst 4
dc 2
sdi 23 TDI
sck 22 tck
bl 3.3v
sdo 19 TDO
TCS 21
关于spi频率 网上的解释,所以实际的频率只会是250的整数倍 我尝试把ili9231的频率改成7999999,也可以运行 也能感受到刷新确实快了
中文翻译:【源于谷歌】
我想要更好的性能和更快的更新!
您可以更改的SPI频率(超频显示)编辑/etc/modprobe.d/adafruit.conf和更改选项行:
fbtft_device名= adafruitrt28选择旋转=90频率=62000000 FPS=60
这里的东西,郫县只支持SPI频率固定的数量。因此,调整的数量一点也不会做任何事情。内核将圆的数目为最接近的值。你总是会得到频率是250MHz的用偶数分。这是唯一的SPI频率这个内核支持
15625000(a.k.a16000000=16兆赫)
17857142(亦称18000000=18兆赫)
20833333(a.k.a2100=21兆赫)
25,000,000(=25兆赫)
31250000(a.k.a32000000=32MHz的)
41666666(a.k.a4200=在42MHz)
62,500,000(a.k.a62000000=62MHz)
所以,如果你把4800万的速度,你就不会真正得到48MHz的,你居然只得到大约为42MHz,因为它被舍去。我们很好地测试了这款显示器具有32MHz的,我们认为。但是你可以把在42MHz,甚至尝试62MHz,它会更新更快
你可以调整的帧率(每秒帧数)是20〜60和频率高达62MHz的性能和速度的权衡。重新引导每个编辑后,以确保设置正确加载。有一个权衡,如果你要求更高的FPS你要加载的内核更多的是因为它试图保持显示更新。
最终的setup。h
// USER DEFINED SETTINGS // Set driver type, fonts to be loaded, pins used and SPI control method etc // // See the User_Setup_Select.h file if you wish to be able to define multiple // setups and then easily select which setup file is used by the compiler. // // If this file is edited correctly then all the library example sketches should // run without the need to make any more changes for a particular hardware setup! // Note that some sketches are designed for a particular TFT pixel width/height // ################################################################################## // // Section 1. Call up the right driver file and any options for it // // ################################################################################## // Define STM32 to invoke optimised processor support (only for STM32) //#define STM32 // Defining the STM32 board allows the library to optimise the performance // for UNO compatible "MCUfriend" style shields //#define NUCLEO_64_TFT //#define NUCLEO_144_TFT // STM32 8 bit parallel only: // If STN32 Port A or B pins 0-7 are used for 8 bit parallel data bus bits 0-7 // then this will improve rendering performance by a factor of ~8x //#define STM_PORTA_DATA_BUS //#define STM_PORTB_DATA_BUS // Tell the library to use 8 bit parallel mode (otherwise SPI is assumed) //#define TFT_PARALLEL_8_BIT // Display type - only define if RPi display //#define RPI_DISPLAY_TYPE // 20MHz maximum SPI // Only define one driver, the other ones must be commented out // #define ILI9341_DRIVER // Generic driver for common displays // #define ILI9341_2_DRIVER // Alternative ILI9341 driver, see https://github.com/Bodmer/TFT_eSPI/issues/1172 // #define ST7735_DRIVER // Define additional parameters below for this display //#define ILI9163_DRIVER // Define additional parameters below for this display //#define S6D02A1_DRIVER //#define RPI_ILI9486_DRIVER // 20MHz maximum SPI //#define HX8357D_DRIVER #define ILI9481_DRIVER // #define ILI9486_DRIVER //9481跟9486如果选错的话正好显示的内容是反的 // #define ILI9488_DRIVER // WARNING: Do not connect ILI9488 display SDO to MISO if other devices share the SPI bus (TFT SDO does NOT tristate when CS is high) //#define ST7789_DRIVER // Full configuration option, define additional parameters below for this display //#define ST7789_2_DRIVER // Minimal configuration option, define additional parameters below for this display //#define R61581_DRIVER //#define RM68140_DRIVER //#define ST7796_DRIVER //#define SSD1351_DRIVER //#define SSD1963_480_DRIVER //#define SSD1963_800_DRIVER //#define SSD1963_800ALT_DRIVER //#define ILI9225_DRIVER //#define GC9A01_DRIVER // Some displays support SPI reads via the MISO pin, other displays have a single // bi-directional SDA pin and the library will try to read this via the MOSI line. // To use the SDA line for reading data from the TFT uncomment the following line: #define TFT_SDA_READ // This option is for ESP32 ONLY, tested with ST7789 and GC9A01 display only // For ST7735, ST7789 and ILI9341 ONLY, define the colour order IF the blue and red are swapped on your display // Try ONE option at a time to find the correct colour order for your display // #define TFT_RGB_ORDER TFT_RGB // Colour order Red-Green-Blue // #define TFT_RGB_ORDER TFT_BGR // Colour order Blue-Green-Red // For M5Stack ESP32 module with integrated ILI9341 display ONLY, remove // in line below // #define M5STACK // For ST7789, ST7735, ILI9163 and GC9A01 ONLY, define the pixel width and height in portrait orientation 像素高宽 // #define TFT_WIDTH 80 // #define TFT_WIDTH 128 // #define TFT_WIDTH 240 // ST7789 240 x 240 and 240 x 320 // #define TFT_HEIGHT 160 // #define TFT_HEIGHT 128 // #define TFT_HEIGHT 240 // ST7789 240 x 240 // #define TFT_HEIGHT 320 // ST7789 240 x 320 // #define TFT_HEIGHT 240 // GC9A01 240 x 240 // For ST7735 ONLY, define the type of display, originally this was based on the // colour of the tab on the screen protector film but this is not always true, so try // out the different options below if the screen does not display graphics correctly, // e.g. colours wrong, mirror images, or stray pixels at the edges. // Comment out ALL BUT ONE of these options for a ST7735 display driver, save this // this User_Setup file, then rebuild and upload the sketch to the board again: // #define ST7735_INITB // #define ST7735_GREENTAB // #define ST7735_GREENTAB2 // #define ST7735_GREENTAB3 // #define ST7735_GREENTAB128 // For 128 x 128 display // #define ST7735_GREENTAB160x80 // For 160 x 80 display (BGR, inverted, 26 offset) // #define ST7735_REDTAB // #define ST7735_BLACKTAB // #define ST7735_REDTAB160x80 // For 160 x 80 display with 24 pixel offset // If colours are inverted (white shows as black) then uncomment one of the next // 2 lines try both options, one of the options should correct the inversion. // #define TFT_INVERSION_ON // #define TFT_INVERSION_OFF // ################################################################################## // // Section 2. Define the pins that are used to interface with the display here // // ################################################################################## // If a backlight control signal is available then define the TFT_BL pin in Section 2 // below. The backlight will be turned ON when tft.begin() is called, but the library // needs to know if the LEDs are ON with the pin HIGH or LOW. If the LEDs are to be // driven with a PWM signal or turned OFF/ON then this must be handled by the user // sketch. e.g. with digitalWrite(TFT_BL, LOW); // #define TFT_BL 32 // LED back-light control pin // #define TFT_BACKLIGHT_ON HIGH // Level to turn ON back-light (HIGH or LOW) // We must use hardware SPI, a minimum of 3 GPIO pins is needed. // Typical setup for ESP8266 NodeMCU ESP-12 is : // // Display SDO/MISO to NodeMCU pin D6 (or leave disconnected if not reading TFT) // Display LED to NodeMCU pin VIN (or 5V, see below) // Display SCK to NodeMCU pin D5 // Display SDI/MOSI to NodeMCU pin D7 // Display DC (RS/AO)to NodeMCU pin D3 // Display RESET to NodeMCU pin D4 (or RST, see below) // Display CS to NodeMCU pin D8 (or GND, see below) // Display GND to NodeMCU pin GND (0V) // Display VCC to NodeMCU 5V or 3.3V // // The TFT RESET pin can be connected to the NodeMCU RST pin or 3.3V to free up a control pin // // The DC (Data Command) pin may be labelled AO or RS (Register Select) // // With some displays such as the ILI9341 the TFT CS pin can be connected to GND if no more // SPI devices (e.g. an SD Card) are connected, in this case comment out the #define TFT_CS // line below so it is NOT defined. Other displays such at the ST7735 require the TFT CS pin // to be toggled during setup, so in these cases the TFT_CS line must be defined and connected. // // The NodeMCU D0 pin can be used for RST // // // Note: only some versions of the NodeMCU provide the USB 5V on the VIN pin // If 5V is not available at a pin you can use 3.3V but backlight brightness // will be lower. // ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP8266 SETUP ###### // For NodeMCU - use pin numbers in the form PIN_Dx where Dx is the NodeMCU pin designation // #define TFT_CS PIN_D8 // Chip select control pin D8 // #define TFT_DC PIN_D3 // Data Command control pin // #define TFT_RST PIN_D4 // Reset pin (could connect to NodeMCU RST, see next line) //#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V //#define TFT_BL PIN_D1 // LED back-light (only for ST7789 with backlight control pin) //#define TOUCH_CS PIN_D2 // Chip select pin (T_CS) of touch screen //#define TFT_WR PIN_D2 // Write strobe for modified Raspberry Pi TFT only // ###### FOR ESP8266 OVERLAP MODE EDIT THE PIN NUMBERS IN THE FOLLOWING LINES ###### // Overlap mode shares the ESP8266 FLASH SPI bus with the TFT so has a performance impact // but saves pins for other functions. It is best not to connect MISO as some displays // do not tristate that line when chip select is high! // On NodeMCU 1.0 SD0=MISO, SD1=MOSI, CLK=SCLK to connect to TFT in overlap mode // On NodeMCU V3 S0 =MISO, S1 =MOSI, S2 =SCLK // In ESP8266 overlap mode the following must be defined //#define TFT_SPI_OVERLAP // In ESP8266 overlap mode the TFT chip select MUST connect to pin D3 //#define TFT_CS PIN_D3 //#define TFT_DC PIN_D5 // Data Command control pin //#define TFT_RST PIN_D4 // Reset pin (could connect to NodeMCU RST, see next line) //#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V // ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP32 SETUP ###### // For ESP32 Dev board (only tested with ILI9341 display) // The hardware SPI can be mapped to any pins 针脚定义 #define TFT_MISO 19 #define TFT_MOSI 23 #define TFT_SCLK 22 #define TFT_CS 0 // Chip select control pin #define TFT_DC 2 // Data Command control pin #define TFT_RST 4 // Reset pin (could connect to RST pin) // #define TFT_RST -1 // Set TFT_RST to -1 if display RESET is connected to ESP32 board RST // For ESP32 Dev board (only tested with GC9A01 display) // The hardware SPI can be mapped to any pins //#define TFT_MOSI 15 // In some display driver board, it might be written as "SDA" and so on. //#define TFT_SCLK 14 //#define TFT_CS 5 // Chip select control pin //#define TFT_DC 27 // Data Command control pin //#define TFT_RST 33 // Reset pin (could connect to Arduino RESET pin) //#define TFT_BL 22 // LED back-light #define TOUCH_CS 21 // Chip select pin (T_CS) of touch screen //#define TFT_WR 22 // Write strobe for modified Raspberry Pi TFT only // For the M5Stack module use these #define lines // #define TFT_MISO 19 // #define TFT_MOSI 23 // #define TFT_SCLK 18 // #define TFT_CS 14 // Chip select control pin // #define TFT_DC 27 // Data Command control pin // #define TFT_RST 33 // Reset pin (could connect to Arduino RESET pin) // #define TFT_BL 32 // LED back-light (required for M5Stack) // ###### EDIT THE PINs BELOW TO SUIT YOUR ESP32 PARALLEL TFT SETUP ###### // The library supports 8 bit parallel TFTs with the ESP32, the pin // selection below is compatible with ESP32 boards in UNO format. // Wemos D32 boards need to be modified, see diagram in Tools folder. // Only ILI9481 and ILI9341 based displays have been tested! // Parallel bus is only supported for the STM32 and ESP32 // Example below is for ESP32 Parallel interface with UNO displays // Tell the library to use 8 bit parallel mode (otherwise SPI is assumed) //#define TFT_PARALLEL_8_BIT // The ESP32 and TFT the pins used for testing are: //#define TFT_CS 33 // Chip select control pin (library pulls permanently low //#define TFT_DC 15 // Data Command control pin - must use a pin in the range 0-31 //#define TFT_RST 32 // Reset pin, toggles on startup //#define TFT_WR 4 // Write strobe control pin - must use a pin in the range 0-31 //#define TFT_RD 2 // Read strobe control pin //#define TFT_D0 12 // Must use pins in the range 0-31 for the data bus //#define TFT_D1 13 // so a single register write sets/clears all bits. //#define TFT_D2 26 // Pins can be randomly assigned, this does not affect //#define TFT_D3 25 // TFT screen update performance. //#define TFT_D4 17 //#define TFT_D5 16 //#define TFT_D6 27 //#define TFT_D7 14 // ###### EDIT THE PINs BELOW TO SUIT YOUR STM32 SPI TFT SETUP ###### // The TFT can be connected to SPI port 1 or 2 //#define TFT_SPI_PORT 1 // SPI port 1 maximum clock rate is 55MHz //#define TFT_MOSI PA7 //#define TFT_MISO PA6 //#define TFT_SCLK PA5 //#define TFT_SPI_PORT 2 // SPI port 2 maximum clock rate is 27MHz //#define TFT_MOSI PB15 //#define TFT_MISO PB14 //#define TFT_SCLK PB13 // Can use Ardiuno pin references, arbitrary allocation, TFT_eSPI controls chip select //#define TFT_CS D5 // Chip select control pin to TFT CS //#define TFT_DC D6 // Data Command control pin to TFT DC (may be labelled RS = Register Select) //#define TFT_RST D7 // Reset pin to TFT RST (or RESET) // OR alternatively, we can use STM32 port reference names PXnn //#define TFT_CS PE11 // Nucleo-F767ZI equivalent of D5 //#define TFT_DC PE9 // Nucleo-F767ZI equivalent of D6 //#define TFT_RST PF13 // Nucleo-F767ZI equivalent of D7 //#define TFT_RST -1 // Set TFT_RST to -1 if the display RESET is connected to processor reset // Use an Arduino pin for initial testing as connecting to processor reset // may not work (pulse too short at power up?) // ################################################################################## // // Section 3. Define the fonts that are to be used here // // ################################################################################## // Comment out the #defines below with // to stop that font being loaded // The ESP8366 and ESP32 have plenty of memory so commenting out fonts is not // normally necessary. If all fonts are loaded the extra FLASH space required is // about 17Kbytes. To save FLASH space only enable the fonts you need! #define LOAD_GLCD // Font 1. Original Adafruit 8 pixel font needs ~1820 bytes in FLASH #define LOAD_FONT2 // Font 2. Small 16 pixel high font, needs ~3534 bytes in FLASH, 96 characters #define LOAD_FONT4 // Font 4. Medium 26 pixel high font, needs ~5848 bytes in FLASH, 96 characters #define LOAD_FONT6 // Font 6. Large 48 pixel font, needs ~2666 bytes in FLASH, only characters 1234567890:-.apm #define LOAD_FONT7 // Font 7. 7 segment 48 pixel font, needs ~2438 bytes in FLASH, only characters 1234567890:-. #define LOAD_FONT8 // Font 8. Large 75 pixel font needs ~3256 bytes in FLASH, only characters 1234567890:-. //#define LOAD_FONT8N // Font 8. Alternative to Font 8 above, slightly narrower, so 3 digits fit a 160 pixel TFT #define LOAD_GFXFF // FreeFonts. Include access to the 48 Adafruit_GFX free fonts FF1 to FF48 and custom fonts // Comment out the #define below to stop the SPIFFS filing system and smooth font code being loaded // this will save ~20kbytes of FLASH #define SMOOTH_FONT // ################################################################################## // // Section 4. Other options // // ################################################################################## // Define the SPI clock frequency, this affects the graphics rendering speed. Too // fast and the TFT driver will not keep up and display corruption appears. // With an ILI9341 display 40MHz works OK, 80MHz sometimes fails // With a ST7735 display more than 27MHz may not work (spurious pixels and lines) // With an ILI9163 display 27 MHz works OK. // #define SPI_FREQUENCY 1000000 // #define SPI_FREQUENCY 5000000 // #define SPI_FREQUENCY 10000000 #define SPI_FREQUENCY 15999999 // #define SPI_FREQUENCY 20000000 // #define SPI_FREQUENCY 27000000 // #define SPI_FREQUENCY 40000000 //如果有问题可以尝试降低频率 // #define SPI_FREQUENCY 55000000 // STM32 SPI1 only (SPI2 maximum is 27MHz) // #define SPI_FREQUENCY 80000000 // Optional reduced SPI frequency for reading TFT #define SPI_READ_FREQUENCY 20000000 // The XPT2046 requires a lower SPI clock rate of 2.5MHz so we define that here: #define SPI_TOUCH_FREQUENCY 600000 // The ESP32 has 2 free SPI ports i.e. VSPI and HSPI, the VSPI is the default. // If the VSPI port is in use and pins are not accessible (e.g. TTGO T-Beam) // then uncomment the following line: //#define USE_HSPI_PORT // Comment out the following #define if "SPI Transactions" do not need to be // supported. When commented out the code size will be smaller and sketches will // run slightly faster, so leave it commented out unless you need it! // Transaction support is needed to work with SD library but not needed with TFT_SdFat // Transaction support is required if other SPI devices are connected. // Transactions are automatically enabled by the library for an ESP32 (to use HAL mutex) // so changing it here has no effect // #define SUPPORT_TRANSACTIONS
自带的校准触控校准程序
/* Sketch to generate the setup() calibration values, these are reported to the Serial Monitor. The sketch has been tested on the ESP8266 and screen with XPT2046 driver. */ #include <SPI.h> #include <TFT_eSPI.h> // Hardware-specific library TFT_eSPI tft = TFT_eSPI(); // Invoke custom library //------------------------------------------------------------------------------------------ void setup() { // Use serial port Serial.begin(115200); // Initialise the TFT screen tft.init(); // Set the rotation to the orientation you wish to use in your project before calibration // (the touch coordinates returned then correspond to that rotation only) tft.setRotation(1); // Calibrate the touch screen and retrieve the scaling factors touch_calibrate(); /* // Replace above line with the code sent to Serial Monitor // once calibration is complete, e.g.: uint16_t calData[5] = { 286, 3534, 283, 3600, 6 }; tft.setTouch(calData); */ // Clear the screen tft.fillScreen(TFT_BLACK); tft.drawCentreString("Touch screen to test!",tft.width()/2, tft.height()/2, 2); } //------------------------------------------------------------------------------------------ void loop(void) { uint16_t x = 0, y = 0; // To store the touch coordinates // Pressed will be set true is there is a valid touch on the screen bool pressed = tft.getTouch(&x, &y); // Draw a white spot at the detected coordinates if (pressed) { tft.fillCircle(x, y, 2, TFT_WHITE); //Serial.print("x,y = "); //Serial.print(x); //Serial.print(","); //Serial.println(y); } } //------------------------------------------------------------------------------------------ // Code to run a screen calibration, not needed when calibration values set in setup() void touch_calibrate() { uint16_t calData[5]; uint8_t calDataOK = 0; // Calibrate tft.fillScreen(TFT_BLACK); tft.setCursor(20, 0); tft.setTextFont(2); tft.setTextSize(1); tft.setTextColor(TFT_WHITE, TFT_BLACK); tft.println("Touch corners as indicated"); tft.setTextFont(1); tft.println(); tft.calibrateTouch(calData, TFT_MAGENTA, TFT_BLACK, 15); Serial.println(); Serial.println(); Serial.println("// Use this calibration code in setup():"); Serial.print(" uint16_t calData[5] = "); Serial.print("{ "); for (uint8_t i = 0; i < 5; i++) { Serial.print(calData[i]); if (i < 4) Serial.print(", "); } Serial.println(" };"); Serial.print(" tft.setTouch(calData);"); Serial.println(); Serial.println(); tft.fillScreen(TFT_BLACK); tft.setTextColor(TFT_GREEN, TFT_BLACK); tft.println("Calibration complete!"); tft.println("Calibration code sent to Serial port."); delay(4000); }
实际视频 7.46 lPX:/ esp32驱动ili9481# 单片机 https://v.douyin.com/jN3VdS5/ 复制此链接,打开Dou音搜索,直接观看视频!
2.33 PkC:/ esp32+电阻屏触控测试# 单片机 https://v.douyin.com/jN3wj8k/ 复制此链接,打开Dou音搜索,直接观看视频!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· AI 智能体引爆开源社区「GitHub 热点速览」
· 从HTTP原因短语缺失研究HTTP/2和HTTP/3的设计差异
· 三行代码完成国际化适配,妙~啊~