【数位DP】数字统计

题目

给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次。

数位DP

(1)分情况,逐位讨论。

(2)模型:计算在[L,R]中有多少个数满足条件。

(3)套路:将问题转化为[1,R]-[1,L-1],只需回答[1,X]的询问即可。

思路

1.算出[1,X]:

(1)按位拆分,为后面做铺垫

(2)预处理:

	 1)pow[]表示10的次幂

	 2)f[]表示:后i位自由的话每个数字出现的次数

ps:有一个规律。0~9每个数字出现1次,10~99出现20次,100~999出现300次。出现次数为:n*10^(n-1)(n为位数)

(3)处理比X少一位的情况

       

 从0~9共10个数。同位数计算10次,加上pow[i-1]即可。

(4)处理全部位数

	从最高位到最低位。比如ABCDE,A会出现BCDE+1次,以此类推。

2.将第一遍算出的答案全部*(-1),就相当于减去。

#include<iostream>
using namespace std;
long long ans[10],f[20],pow[20];
int p[20],l;
void deal(long long x, long long y){ // 统计固定位是x,自由位有y个的情况 
    for(long long i=0;i<10;i++) ans[i]+=f[y]; // 算后面的 
    for(long long p=x;p;p/=10) ans[p%10]+=pow[y]; // 算前面的 
}
void calc(long long x){
    if(!x) return;
    l=0,pow[0]=1;
    for(long long tp=x;tp;tp/=10) p[++l]=tp%10; // 一位一位拆分 
    for(int i=1;i<=l;i++) pow[i]=pow[i-1]*10; // 10的次幂 
    for(int i=1;i<=l;i++) f[i]=pow[i-1]*i; // 后i位是自由的话,每个数字出现多少次 
    // 处理比l小位数的情况 
    for(int i=1;i<l;i++) // 枚举,当前是i位数 
        for(int k=1;k<10;k++) deal(k,i-1); // 枚举这个i位数,是以k开头的 
    // 处理l位数的情况
    // i : 当前算到哪个位置
    // lst : 当前前面的数是多少
    // st,en : 数字的枚举范围 
    for(long long i=l,lst=0,st,en;i;lst+=p[i--]){
        st=(i==l)? 1:0;//如果i==l,则这是最高位,不能是0 
        en=(i==1)? p[i]:p[i]-1;// 
        lst *= 10;
        for(int k = st; k <= en;k++) deal(lst+k, i-1);
    }
}
int main(){
    long long a,b;
    cin>>a>>b;
    calc(a-1);
    for(int i=0;i<10;i++) ans[i]*=-1;
    calc(b);
    for(int i=0;i<10;i++) cout<<ans[i]<<" ";
    return 0;
}

欢迎指正评论O(∩_∩)O~~

posted @ 2018-11-07 16:00  Kylin_Seven  阅读(519)  评论(0编辑  收藏  举报