【概率DP】$P2059$ 卡牌游戏

链接

题目描述

N个人坐成一圈玩游戏。一开始我们把所有玩家按顺时针从1到N编号。首先第一回合是玩家1作为庄家。每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字为X,则庄家首先把卡片上的数字向所有玩家展示,然后按顺时针从庄家位置数第X个人将被处决即退出游戏。然后卡片将会被放回卡牌堆里并重新洗牌。被处决的人按顺时针的下一个人将会作为下一轮的庄家。那么经过N-1轮后最后只会剩下一个人,即为本次游戏的胜者。现在你预先知道了总共有M张卡片,也知道每张卡片上的数字。现在你需要确定每个玩家胜出的概率。

输入格式

第一行包括两个整数N,M分别表示玩家个数和卡牌总数。

接下来一行是包含M个整数,分别给出每张卡片上写的数字。

输出格式

输出一行包含N个百分比形式给出的实数,四舍五入到两位小数。分别给出从玩家1到玩家N的胜出概率,每个概率之间用空格隔开,最后不要有空格。

样例

5 5
2 3 5 7 11
22.72% 17.12% 15.36% 25.44% 19.36%
4 4
3 4 5 6
25.00% 25.00% 25.00% 25.00%

对于30%的数据,有\(1 \leq N \leq 10\)

对于50%的数据,有\(1 \leq N \leq 30\)

对于100%的数据,有1 \(\leq\) N \(\leq\) 50, 1 \(\leq\) M \(\leq\) 50 ,1 \(\leq\)每张卡片上的数字\(\leq\) 50

Solution

其实这题一开始我一点思路都没有。开始想着,正着搜,但似乎要记录很多东西,想了想转移不可行。那……倒着搜?

设f[i][j]为有i个人的时候,第j个人胜利的概率。因为概率可以相加,所以可以往后推。

如何转移?手推一下发现,在有i个人的情况下,庄家抽到牌k,那么在i - 1个人中第j个人的位置是……分类讨论。若 k < j,j = j - k, 若k > j, j = i - k + j,若k = j,不用考虑,因为j死了。

所以,转移方程长这样:

int p = a[k] % i == 0? i:a[k] % i;
if(p > j) f[i][j] += f[i - 1][i - p + j] / m;
else if(p < j) f[i][j] += f[i - 1][j - p] / m;

\(That's~~all\)

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
long long read(){
    long long x = 0; int f = 0; char c = getchar();
    while(c < '0' || c > '9') f |= c == '-', c = getchar();
    while(c >= '0' && c <= '9') x = (x << 3) + (x << 1) + (c ^ 48), c = getchar();
    return f? -x:x;
}

int n, m, a[57];
double f[57][57];
int main(){
	n = read(); m = read();
	for(int i = 1; i <= m; ++i) a[i] = read();
	f[1][1] = 1.0;
	for(int i = 2; i <= n; ++i)
		for(int j = 1; j <= i; ++j)
		    for(int k = 1; k <= m; ++k){
		    	int p = a[k] % i == 0? i:a[k] % i;
		    	if(p > j) f[i][j] += f[i - 1][i - p + j] / m;
		    	else if(p < j) f[i][j] += f[i - 1][j - p] / m;
		    }
	printf("%.2lf%%", f[n][1] * 100);
	for(int i = 2; i <= n; ++i) printf(" %.2lf%%", f[n][i] * 100);
	return 0;
}
posted @ 2019-07-28 17:37  Kylin_Seven  阅读(166)  评论(0编辑  收藏  举报