关于『数论』:整除理论

「一本书上每多一个公式,就会死掉减少一半读者。」—— 霍金

「这上面每多一个公式,我就会失明一次。」—— JQ


序言

  数论真有趣(弥天大雾。
  (投放 My blogs csdn & 博客园😃。)
  (btw,%%% cqbzgm's 帖子。)



一、整除

(一). 定义

  • 若整数 \(b\) 除以非零整数 \(a\) ,商为整数,且余数为零, 我们就说 \(a\) 能整除 \(b\),记作 \(a\mid b\),读作「\(a\) 整除 \(b\)」或「\(b\) 能被 \(a\) 整除」。其中,\(a\) 叫做 \(b\) 的约数(因数),\(b\) 叫做 \(a\) 的倍数。
  • 否则,我们就说 \(a\) 不能整除 \(b\),记作 \(a \nmid b\)
  • 整除属于除尽的一种特殊情况。

(二). 整除的基本性质

性质 1(传递性):若 \(a\ |\ b,\ b\ |\ c\),则 \(a\ |\ c\)

\[\begin{align*} 证:&由题可得: a \mid b,\ b \mid c \\&令\ b = ax,\ c = by\ (x, y\in \mathbb{Z}, x \ne 0) \\ &\therefore c = ax \cdot y \\ &\therefore a \mid c \end{align*}\]


性质 2: 若 \(a\ |\ b,\ a\ |\ c\),则 \(a\ |\ bx\ \pm cy\ (x, y\in \mathbb{Z})\)

\[\begin{align*} 证:&由题可得: a \mid b,\ a \mid c \\ &令\ b = am,\ c = an\ (x, y\in \mathbb{Z}) \\ &\therefore a \mid bx \pm cy \\ &\ \ \ \ \Leftrightarrow a\mid amx \pm any \\ &\ \ \ \ \Leftrightarrow a\mid a(mx \pm ny) \\ &\therefore a \mid bx \pm cy \end{align*}\]

补充:若 \(a\ |\ b_i(i =1,2,\cdots,k)\) , 则 \(a \mid p_1b_1+p_2b_2+ \cdots+p_kb_k (p_j(j = 1,2\cdots,k) \in \mathbb{Z}\))


性质 3:若 \(x \in \mathbb{Z}, x \ne 0\)\(a \mid b\) ,则 \(ax\mid bx\ (x\in \mathbb{Z}, x \ne 0)\)

\[\begin{align*} 证:&令\ b = am\ (m\in \mathbb{Z},m\ne 0) \\ &\therefore 目标 \Leftrightarrow ax\mid amx \\ &\therefore ax\mid bx \end{align*}\]


性质 4:若 \(ax + by = 1\) ,且 \(a \mid k,\ b \mid k\),则 \(ab \mid k\ (x, y\in \mathbb{Z} 且\ a, b\ne 0)\)

\[\begin{align*} 证:&令\ k = am = bn\ (m, n\in \mathbb{Z}) \\ &\because ax + by = 1 \\ &\therefore \frac{x}{b} + \frac{y}{a} = \frac{1}{ab} \\ &\therefore \frac{k}{ab} = k \cdot (\frac{x}{b} + \frac{y}{a})= \frac{kx}{b} + \frac{ky}{a} = nx + my \\ &\therefore 1 \mid \frac{k}{ab} \\ &\therefore ab \mid k \end{align*}\]


性质 5:若 \(a = bx + c\),则 \(b \mid a\) 的充分必要条件是 \(b \mid c\)

\[\begin{align*} 证:&若已知\ b \mid c\ 且\ a = bx + c \\ &令\ c = bm\ (m\in \mathbb{Z}) \\ &\therefore a = bx + c \\ &\ \ \ \ \Leftrightarrow a = bx + bm \\ &\ \ \ \ \Leftrightarrow a = b(x + m) \\ &\therefore b \mid a \\ &若已知\ b \mid a\ 且\ a = bx + c \\ &令\ a = bn\ (n\in \mathbb{Z}) \\ &\therefore bn = bx + c \\ &\ \ \ \ \Leftrightarrow c = bm - bx \\ &\ \ \ \ \Leftrightarrow c = b(m - x) \\ &\therefore b \mid c \end{align*}\]

注释:

  1. 充分必要条件:充分必要条件也即充要条件。意思是说,如果能从命题 p 推出命题 q,而且也能从命题 q 推出命题 p ,则称 p 是 q 的充分必要条件,且 q 也是 p 的充分必要条件。
  2. 充分条件:如果 A 能推出 B,那么 A 就是 B 的充分条件。
  3. 必要条件:如果没有 A,则必然没有 B;如果有 A 而未必有 B,则 A 就是 B 的必要条件。

性质 6:若 \(p \mid a\)\(q \mid a\)\((p, q) = 1\),则 \(pq \mid a\)

\[\begin{align*} 证:&设\ a = mp = nq\ (m, n \in \mathbb{Z}) \\& 由\ mp = nq\ 可知:p\mid nq \\& \because p\ 与\ q\ 互质 \\& \therefore p\mid n \\& 设\ n = xp\ (x \in \mathbb{Z}) \\& \therefore a = nq = xpq \\& \therefore pq\mid a \end{align*}\]

注释:

  1. 为什么要加「\((p, q) = 1\) (即互质)」?
    假若不加互质,是有可能成立的,但并不一定所有情况都成立。举个反🌰——

\[3\mid 12\ 且\ 6\mid 12,但\ 3 \times 6 = 18,18\nmid 12。 \]

变式:

  若 \(p \mid a\)\(q \mid a\)\(mp + nq = 1\),则 \(pq \mid a\ (m, n \in \mathbb{Z})\).
  解释:其实这个变式和「性质 6」是同理的。

  「\(mp + nq = 1\)」,其实就表达了「 \((p, q) = 1\)」(根据裴蜀定理可得,以后会补充)。


习题集
1. 证明:任意奇数的平方减 1 是 8 的倍数。

\[\begin{align*} 证:&设此奇数为\ 2k + 1\ (k \in \mathbb{Z}) \\ & (2k + 1)^2 - 1 \\ &= 4k^2 + 4k + 1- 1 \\ &= 4k(k + 1) \\ &\because8 \mid 4k(k + 1) \\ &\therefore 8 \mid (2k + 1)^2 \end{align*}\]

2. 证明:当 n 是偶数时,2 | 3^n + 1;当 n 是奇数时,2^2 | 3^n + 1;但无论 n 是偶数还是奇数,对任意正整数 α > 2,都有 2^α ∤ 3^n + 1 (n ∈ N+)。

\[\begin{align*} 证: \\ (1) &\because n \equiv 0\pmod 2 \\ &\therefore(3^n + 1)\bmod 2 \\ &= [(3^n \bmod 2) + (1 \bmod 2)] \bmod 2 \\ &= \{[(3 \bmod 2)^n \bmod 2] + 1\} \bmod 2 \\ &= [(1 \bmod 2) + 1] \bmod 2 \\ &= (1 + 1) \bmod 2 \\ &= 0 \\ (2)&\because n \equiv 1\pmod 2 \\ &\therefore(3^n + 1)\bmod 2^2 \\ &= [(3^n \bmod 4) + (1 \bmod 4)] \bmod 4 \\ &= (3 + 1) \bmod 4 \\ &= 0 \\ (3)\ &若\ n \equiv 0 \pmod 2 \\ &(3^n + 1)\bmod 2^{\alpha} \\ &= [(3^n \bmod 2^{\alpha}) + (1 \bmod 2^{\alpha})] \bmod 2^{\alpha} \\ &= (1 + 1) \bmod 2^{\alpha} \\ &= 2 \bmod 2^{\alpha} \\ &\because \alpha > 2 \\ &\therefore 2^{\alpha} \gt 4 \\ &\therefore 2 \bmod 2^{\alpha} = 2 \\ &\therefore2^{\alpha} \nmid (3^n + 1) \\ \\ &若\ n \equiv 1 \pmod 2 \\ &(3^n + 1)\bmod 2^{\alpha} \\ &= [(3^n \bmod 2^{\alpha}) + (1 \bmod 2^{\alpha})] \bmod 2^{\alpha} \\ &= (3 + 1) \bmod 2^{\alpha} \\ &= 4 \bmod 2^{\alpha} \\ &\because \alpha > 2 \\ &\therefore 2^{\alpha} \gt 4 \\ &\therefore 4 \bmod 2^{\alpha} = 4 \\ &\therefore 2^{\alpha} \nmid (3^n + 1) \\ \\ &\therefore 综上,当\ \alpha > 2\ 时,无论\ n\ 是奇数还是偶数,都有\ 2^{\alpha} \nmid (3^n + 1)。 \end{align*}\]

3. 感觉显然,过程待补。

There is NOTHING.

4. 证明:如果 2a + 3b,9a + 5b 中有一个能被 17 整除,那么另外一个也能被 17 整除。

\[\begin{align*} 证:&若\ 17 \mid 2a + 3b \\ &\because 17 \mid 2a + 3b \\ &则\ 17 \mid 5 \times(2a + 3b) \\ &\therefore 17 \mid 10a + 15b \\ &\because (9a + 5b) \times 3 = 27a + 15b = (10a + 15b) + 17a \\ &\because 17 \mid 17a \\ &又\because 17 \mid 10a + 15b \\ &\therefore 17 \mid (10a + 15b) + 17a \\ &\therefore 17 \mid (9a + 5b) \times 3 \\ &又\because (3, 17) = 1 \\ &\therefore 17 \mid 9a + 5b \\ \\ &若\ 17 \mid 9a + 5b \\ &\because 17 \mid 9a + 5b \\ &则\ 17 \mid 3 \times(9a + 5b) \\ &\therefore 17 \mid 27a + 15b \\ &\because (2a + 3b) \times 5 = 10a + 15b = (27a+ 15b) - 17a \\ &\because 17 \mid -17a \\ &又\because 17 \mid 27a + 15b \\ &\therefore 17 \mid (27a + 15b) - 17a \\ &\therefore 17 \mid (2a + 3b) \times 5 \\ &又\because (5, 17) = 1 \\ &\therefore 17 \mid 2a + 3b \end{align*}\]

114514. x,y,z 均为整数,若 11 ∣ 7x + 2y − 5z,求证:11 ∣ 3x−7y+12z。

\[\begin{align*} 证:&令\ a = 7x + 2y − 5z,b = 3x - 7y + 12z \\ &可构造:3a + 4b = 11(3x − 2y + 3z) \\ &则\ 4b = 11 (3x − 2y + 3z ) − 3a \\ &\because 11 \mid (11( 3x − 2y + 3z ) − 3a) \\ &\therefore 11 \mid 4b \\ &\because (11, 4) = 1 \\ &\therefore 11\mid b \\ &即\ 11\mid (3x−7y+12z) \end{align*}\]




二、模运算

(一). 定义

  • 对于整数 \(a,b\ (b \ne 0)\),求 \(a\) 除以 \(b\) 的余数,记作 \(a \bmod b\)

(二). 模运算律

\[\begin{align} &(a + b) \bmod p = (a \bmod p + b \bmod p) \bmod p \\ &(a - b) \bmod p = (a \bmod p - b \bmod p) \bmod p \\ &(a \times b) \bmod p = (a \bmod p \times b \bmod p) \bmod p \\ &a^b \bmod p = (a \bmod p)^b \bmod p \end{align}\]


运算规则 1:\((a + b) \bmod p = (a \bmod p + b \bmod p) \bmod p\)

\[\begin{align*} 证:&令\ a = mp + x, b = np + y\ (m, n, x, y \in \mathbb{Z}\ 且\ x = a \bmod p, y = b \bmod p) \\ &\therefore a + b = (mp + x) + (np + y) \\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ = p(m + n) + (x + y) \\ &\therefore (a + b) \bmod p = [p(m + n) + (x + y)] \bmod p \\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = (x + y) \bmod p \\ &又\because x = a \bmod p, y = b \bmod p \\ &\therefore (a + b) \bmod p = (x + y) \bmod p \\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = (a \bmod p + b \bmod p) \bmod p \end{align*}\]


运算规则 2:\((a - b) \bmod p = (a \bmod p - b \bmod p) \bmod p\)

\[\begin{align*} 证:&令\ a = mp + x, b = np + y\ (m, n, x, y \in \mathbb{Z}\ 且\ x = a \bmod p, y = b \bmod p) \\ &\therefore a - b = (mp + x) - (np + y) \\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ = p(m - n) + (x - y) \\ &\therefore (a - b) \bmod p = [p(m - n) + (x - y)] \bmod p \\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = (x - y) \bmod p \\ &又\because x = a \bmod p, y = b \bmod p \\ &\therefore (a - b) \bmod p = (x - y) \bmod p \\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = (a \bmod p - b \bmod p) \bmod p \end{align*}\]


运算规则 3:\((a \times b) \bmod p = (a \bmod p \times b \bmod p) \bmod p\)

\[\begin{align*} 证:&令\ a = mp + x, b = np + y\ (m, n, x, y \in \mathbb{Z}\ 且\ x = a \bmod p, y = b \bmod p) \\ &\therefore a \times b = (mp + x) \times (np + y) \\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ = mnp^2 + mpy + npx + xy \\ &\therefore (a \times b) \bmod p = [(mp + x) \times (np + y) ] \bmod p \\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = (mnp^2 + mpy + npx + xy) \bmod p \\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = [p(mnp + my + nx) + xy] \bmod p \\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = xy \bmod p \\ &又\because x = a \bmod p, y = b \bmod p \\ &\therefore (a \times b) \bmod p = (x \times y) \bmod p \\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = (a \bmod p \times b \bmod p) \bmod p \end{align*}\]


运算规则 4:\(a^b \bmod p = (a \bmod p)^b \bmod p\)

析:可使用多次「运算规则 3」来证明,为节省篇幅,此略。


(三). 模运算的放缩性

1.放:若 \(a \bmod b = c\),则 \(ax \bmod bx = cx\ (x \in \mathbb{Z}\ 且\ x \ne 0)\)

\[\begin{align*} 证:&令\ a = mb + c \\ &则\ ax \bmod bx \\ &\Leftrightarrow (mbx + cx) \bmod bx \\ &\Leftrightarrow [(mbx \bmod bx) + (cx \bmod bx)] \bmod bx \\ &又\because a \bmod b = c \\ &\therefore c \lt b \\ &\therefore [(mbx \bmod bx) + (cx \bmod bx)] \bmod bx \\ &= (0 + cx) \bmod bx \\ &= cx \\ &\therefore ax \bmod bx = cx \end{align*}\]


2.缩:若 \(a \bmod b = c\),则 \(\dfrac{a}{x} \bmod \dfrac{b}{x} = \dfrac{c}{x}\ (x \in \mathbb{Z}\ 且\ x \ne 0)\)

\[\begin{align*} 证:&令\ a = mb + c \\ &\therefore \dfrac{a}{x} = \dfrac{mb}{x} + \dfrac{c}{x} \\ &又\because a \bmod b = c \\ &\therefore c \lt b \\ &\therefore \dfrac{c}{x} \lt \dfrac{b}{x} \\ &\therefore \dfrac{a}{x} \bmod \dfrac{b}{x} = \dfrac{c}{x} \end{align*}\]


(四). 数的整除规律

1.若 \(2\) 能整除 \(a\) 的末一位(约定 \(0\) 可被任意数整除),则 \(2 \mid a\)

\[\begin{align*} 证:&设\ a = 10x + b\ (x, b \in \mathbb{N}\ 且\ 0 \le b \le 9) \\ &\therefore a \bmod 2 \\ &\Leftrightarrow (10x + b) \bmod 2 \\ &= (10x \bmod 2) + (b \bmod 2) \\ &\because 2 \mid 10\ 且\ 2 \mid b \\ &\therefore 原式 = 0 \end{align*}\]


2.若 \(4\) 能整除 \(a\) 的末两位(约定 \(0\) 可被任意数整除),则 \(4 \mid a\)

\[\begin{align*} 证:&设\ a = 100x + b\ (x, b \in \mathbb{N}\ 且\ 0 \le b \le 99) \\ &\therefore a \bmod 4 \\ &\Leftrightarrow (100x + b) \bmod 4 \\ &= (100x \bmod 4) + (b \bmod 4) \\ &\because 4 \mid 100\ 且\ 4 \mid b \\ &\therefore 原式 = 0 \end{align*}\]


3.若 \(8\) 能整除 \(a\) 的末三位(约定 \(0\) 可被任意数整除),则 \(8 \mid a\)

\[\begin{align*} 证:&设\ a = 1000x + b\ (x, b \in \mathbb{N}\ 且\ 0 \le b \le 999) \\ &\therefore a \bmod 8 \\ &\Leftrightarrow (1000x + b) \bmod 8 \\ &= (1000x \bmod 8) + (b \bmod 8) \\ &\because 8 \mid 1000\ 且\ 8 \mid b \\ &\therefore 原式 = 0 \end{align*}\]


4.若 \(3\) 能整除 \(a\) 的各个数位上的数之和(约定 \(0\) 可被任意数整除),则 \(3 \mid a\)

\[\begin{align*} 证:&设\ a = \overline{b_1b_2 \cdots b_n}\ (b_i \in \mathbb{N}\ 且\ 0 \le b_i \le 9\ 且\ b_1 \ne 0) \\ &\therefore a = b_1 \times \underbrace{100\cdots00}_{n} + b_2 \times \underbrace{100\cdots00}_{n - 1} + \cdots + b_{n - 1} \times 10 + b_n \times 1 \\ &\therefore a \bmod 3 \\ &= (b_1 \times \underbrace{100\cdots00}_{n} \bmod 3) + (b_2 \times \underbrace{100\cdots00}_{n - 1} \bmod 3) + \cdots + (b_{n - 1} \times 10 \bmod 3) + (b_n \times 1 \bmod 3) \\ &= (b_1 \bmod 3) \times (\underbrace{100\cdots00}_{n} \bmod 3) + (b_2 \bmod 3) \times (\underbrace{100\cdots00}_{n - 1} \bmod 3) + \cdots + (b_{n - 1} \bmod 3) \times (10 \bmod 3) + (b_n \bmod 3) \times (1 \bmod 3) \\ &= (b_1 \bmod 3) \times 1 + (b_2 \bmod 3) \times 1 + \cdots + (b_{n - 1} \bmod 3) \times 1+ (b_n \bmod 3) \times 1 \\ &= (b_1+ b_2 + \cdots + b_{n - 1} + b_n) \bmod 3 \\ &\therefore a \bmod 3 \Leftrightarrow(b_1+ b_2 + \cdots + b_{n - 1} + b_n) \bmod 3 \end{align*}\]


5.若 \(11\) 能整除 \(a\) 的奇数位(从低位向高位数)之和与偶数位之和的差(约定 \(0\) 可被任意数整除),则 \(11 \mid a\)

\[\begin{align*} 证:&设\ a = \overline{b_1b_2 \cdots b_n}\ (b_i \in \mathbb{N}\ 且\ 0 \le b_i \le 9\ 且\ b_1 \ne 0) \\ &\therefore a = b_1 \times \underbrace{100\cdots00}_{n} + b_2 \times \underbrace{100\cdots00}_{n - 1} + \cdots + b_{n - 1} \times 10 + b_n \\ &\therefore a \bmod 11 \\ &= (b_1 \times (\underbrace{999\cdots99}_{n - 1} + 1) \bmod 11) + (b_2 \times (\underbrace{100\cdots01}_{n - 1} - 1) \bmod 11) + \cdots + (b_{n - 1} \times (11 - 1) \bmod 11) + (b_n \bmod 11) \\ &= (b_1 \times 1 \bmod 11) + (b_2 \times (-1) \bmod 11) + \cdots + (b_{n - 1} \times (-1) \bmod 11) + (b_n \bmod 11) \\ &= (b_1 \bmod 11) - (b_2 \bmod 11) + \cdots - (b_{n - 1} \bmod 11) + (b_n \bmod 11) \\ &= (b_1 - b_2 + \cdots - b_{n - 1} + b_n) \bmod 11 \\ &= (b_1 + b_3 + \cdots + b_n) - (b_2 + b_4 + \cdots + b_{n - 1}) \bmod 11 \end{align*}\]


6.若 \(7,11,13\) 能整除 \(a\) 的末三位与末三位之前的数所组成的数之差(约定 \(0\) 可被任意数整除),则 \(7 \mid a\)\(11 \mid a\)\(13 \mid a\)(即 \(1001 \mid a\))。

\[\begin{align*} 证:&设\ a = \overline{b_1b_2 \cdots b_n}\ (b_i \in \mathbb{N}\ 且\ 0 \le b_i \le 9\ 且\ b_1 \ne 0) \\ &\therefore a \bmod 1001 \\ &\Leftrightarrow (\overline{b_1b_2 \cdots b_{n - 3}} \times 1000 + \overline{b_{n - 2}b_{n - 1}b_n}) \bmod 1001 \\ &\Leftrightarrow \{(\overline{b_1b_2 \cdots b_{n - 3}} \bmod 1001) \times [(1001 - 1) \bmod 1001] + (\overline{b_{n - 2}b_{n - 1}b_n} \bmod 1001)] \bmod 1001 \\ &\Leftrightarrow \{(\overline{b_1b_2 \cdots b_{n - 3}} \bmod 1001) \times (-1) + (\overline{b_{n - 2}b_{n - 1}b_n} \bmod 1001)] \bmod 1001 \\ &\Leftrightarrow (\overline{b_{n - 2}b_{n - 1}b_n} -\overline{b_1b_2 \cdots b_{n - 3}}) \bmod 1001 \end{align*}\]




三、同余

(一). 定义

  • \(m\) 是一个给定的正整数,若满足 \(m \mid a - b\),则称 \(a\)\(b\) 对模 \(m\) 同余,记作 \(a \equiv b \pmod m\)(称为 \(a, b\)\(m\) 的同余式)。

  • \(m \nmid a - b\),则 \(a, b\) 一定不同余。

  • 若满足 \(a = b + km\ (k \in \mathbb{Z})\),则 \(a\)\(b\)\(m\) 除时有相同的余数。即:\(m \mid a - b \Leftrightarrow a \equiv b \pmod m\)

  • 如果没有特别说明,模数总是正整数

  • \(p = a - b\),则 \(a \equiv b \pmod p\ (a, b, p \in \mathbb{Z})\)

    证明:若 p = a - b,则 a≡b(mod p) (a,b,p ∈ Z)

    \[\begin{align*} 证:&\because a = b + p \\ &\therefore a \bmod p \\ &\Leftrightarrow (b + p) \bmod p \\ &\Leftrightarrow [(b \bmod p) + (p \bmod p)] \bmod p \\ &\Leftrightarrow b \bmod p \end{align*}\]

(二). 同余的基本性质

性质 1(自反性):\(a \equiv a \pmod m\)

析:真 · 显然


性质 2(对称性):若 \(a \equiv b \pmod p\),则 \(b \equiv a \pmod p\)

析:真 · 显然


性质 3(传递性):若 \(a \equiv b \pmod p\)\(b \equiv c \pmod p\),则 \(a \equiv c \pmod p\)

析:真 · 显然


性质 4(同加性):若 \(a \equiv b \pmod p\),则 \((a + c) \equiv (b + c) \pmod p\)

\[\begin{align*} 证:&\because a \equiv b \pmod p \\ &\therefore p \mid a - b \\ &\Rightarrow p \mid a - b + c - c \\ &\Rightarrow p \mid (a + c) - (b + c) \\ &\therefore (a + c) \equiv (b + c) \pmod p \end{align*}\]


性质 5(同减性):若 \(a \equiv b \pmod p\),则 \((a - c) \equiv (b - c) \pmod p\)

\[\begin{align*} 证:&\because a \equiv b \pmod p \\ &\therefore p \mid a - b \\ &\Rightarrow p \mid a - b + c - c \\ &\Rightarrow p \mid (a - c) - (b - c) \\ &\therefore (a - c) \equiv (b - c) \pmod p \end{align*}\]


性质 6(同乘性):若 \(a \equiv b \pmod p\),则 \((a - c) \equiv (b - c) \pmod p\)

\[\begin{align*} 证:&\because a \equiv b \pmod p \\ &\therefore p \mid a - b \\ &\Rightarrow p \mid (a - b) \times c \\ &\Rightarrow p \mid ac - bc \\ &\therefore (a - c) \equiv (b - c) \pmod p \end{align*}\]


性质 7(同除性):若 \(a \equiv b \pmod p\),且 \(c \mid a,\ c \mid b,\ (c, m) = 1\),则 \(\dfrac{a}{c} \equiv \dfrac{b}{c} \pmod p\)

\[\begin{align*} 证:&令\ a = k_1c,\ b = k_2c\ (k \in \mathbb{Z}) \\ &\therefore \dfrac{a}{c} \equiv \dfrac{b}{c} \pmod p \Leftrightarrow k_1 \equiv k_2 \pmod p \\ &\ \ \ \ \ m \mid (a - b) \Leftrightarrow m \mid (k_1 - k_2) \cdot c \\ &又\because (c, m) = 1 \\ &\therefore m \mid k_1 - k_2 \\ &\therefore k_1 \equiv k_2 \pmod p \\ &即\ \dfrac{a}{c} \equiv \dfrac{b}{c} \pmod p \end{align*}\]


性质 8(同幂性):若 \(a \equiv b \pmod p\)\(c \gt 0\),则 \(a^c \equiv b^c \pmod p\)

析:多次「性质 6」可证,不重复赘述。


性质 9:若 \(a \equiv b \pmod p\)\(c \equiv d \pmod p\),则 \((a + c) \equiv (b + d) \pmod p\)

\[\begin{align*} 证:&\because a \equiv b \pmod p,\ c \equiv d \pmod p \\ &\therefore m \mid a - b,\ m \mid c - d \\ &\therefore m \mid a - b + c - d \\ &\therefore m \mid (a + c) - (b + d) \end{align*}\]


性质 10:若 \(a \equiv b \pmod p\)\(c \equiv d \pmod p\),则 \(ac \equiv bd \pmod p\)

\[\begin{align*} 证:&\because a \equiv b \pmod p,\ c \equiv d \pmod p \\ &\therefore m \mid a - b,\ m \mid c - d \\ &\therefore m \mid (a - b) \cdot c,\ m \mid (c - d) \cdot b \\ &\therefore m \mid ac - bc + bc - bd \\ &\Leftrightarrow m \mid ac - bd \\ &\therefore ac \equiv bd \pmod m \end{align*}\]


性质 11:若 \(a \equiv x \pmod p\)\(a \equiv x \pmod q\)\((p, q) = 1\),则 \(a \equiv x \pmod {pq}\)

\[\begin{align*} 证:&\because a \equiv x \pmod p,\ a \equiv x \pmod q \\ &\therefore p \mid (a - x),\ q \mid (a - x) \\ &\therefore (a - x)\ 是\ p,q\ 的公倍数 \\ &\therefore (a - x)=p^{k_1}q^{k_2}\ (1 \le k,k \in \mathbb{Z}) \\ &\therefore pq \mid a - x \\ &\therefore a \equiv x \pmod {pq} \end{align*}\]




关于『数论』:整除理论 填坑完毕(习题待补)。 (淋漓的诠释了什么是 "鸽王")

(我 真 爱 数 学 呢)
(救命学数学真的会头秃)

填坑.ING🌚🌚🌚

更博弈论怕是要等到猴年马月了。。。

蒟蒻要励志学好数学!!1

posted @ 2022-09-02 19:08  北柒kylin  阅读(500)  评论(0编辑  收藏  举报