java数据结构之ArrayList
一、ArrayList源码注释
/** * ArrayList源码分析,jdk版本为1.8.0_121 */ public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable { private static final long serialVersionUID = 8683452581122892189L; /** * 默认初始化容量 */ private static final int DEFAULT_CAPACITY = 10; /** * * 所有的容量为0的ArrayList对象来共享同一个空的数组 */ private static final Object[] EMPTY_ELEMENTDATA = {}; /** * 使用new ArrayList()构造方法创建Arraylist对象的时候没有指定容量大小,此时该对象就使用这个空数组。 * 之所以要和上面的空数组区分开,是为了在加入第一个元素的时候来区分如何扩展数组容量。 * 如果在加入元素之前是EMPTY_ELEMENTDATA,则加入第一个元素的后容量扩展为1, * 如果在加入元素之前是DEFAULTCAPACITY_EMPTY_ELEMENTDATA,则加入第一个元素后容量扩展为DEFAULT_CAPACITY */ private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {}; /** * 实际存储ArrayList元素的数组,该数组的大小就是当前ArrayList的容量 * 没有设计为私有是为了方便嵌套类的访问 */ transient Object[] elementData; /** * ArrayList 中元素的个数 */ private int size; /** * 构建一个具有指定容量的空列表 */ public ArrayList(int initialCapacity) { if (initialCapacity > 0) { this.elementData = new Object[initialCapacity]; } else if (initialCapacity == 0) { this.elementData = EMPTY_ELEMENTDATA; } else { throw new IllegalArgumentException("Illegal Capacity: " + initialCapacity); } } /** * 构建一个空的ArrayList,并且加入第一个元素后,容量会扩展为DEFAULT_CAPACITY */ public ArrayList() { this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA; } /** * 通过其他集合来构建ArrayList对象 */ public ArrayList(Collection<? extends E> c) { elementData = c.toArray(); if ((size = elementData.length) != 0) { if (elementData.getClass() != Object[].class) elementData = Arrays.copyOf(elementData, size, Object[].class); } else { this.elementData = EMPTY_ELEMENTDATA; } } /** * 将ArrayList的容量缩短为当前元素的个数 */ public void trimToSize() { modCount++; if (size < elementData.length) { elementData = (size == 0) ? EMPTY_ELEMENTDATA : Arrays.copyOf(elementData, size); } } /** * 这个是供外部调用,如果一次需要加入大量的元素的时候,可以手动调用此方法直接设置容量,避免多次自动扩容和数据复制 * 增加ArrayList对象的容量,来确保它至少能够容纳minCapacity个元素。 * 如果当前的ArrayList底层指向的不是DEFAULTCAPACITY_EMPTY_ELEMENTDATA数组且minCapacity要大于0那么就需要进一步确认是否扩容,看minCapacity是否大于当前容量 * 如果当前的ArrayList底层指向的是DEFAULTCAPACITY_EMPTY_ELEMENTDATA且需要扩容的值minCapacity大于10那么也需进一步确认是否扩容,通过后续要代码可知最终还是要扩容 */ public void ensureCapacity(int minCapacity) { int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA) // any size if not default element table ? 0 // larger than default for default empty table. It's already // supposed to be at default size. : DEFAULT_CAPACITY; if (minCapacity > minExpand) { ensureExplicitCapacity(minCapacity); } } /**这个是private方法,供内部调用 * 如果当前对象指向的数组是DEFAULTCAPACITY_EMPTY_ELEMENTDATA,则将DEFAULT_CAPACITY和minCapacity取最大值 */ private void ensureCapacityInternal(int minCapacity) { if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) { minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity); } ensureExplicitCapacity(minCapacity); } /** * 最后确认是否需要扩容,如果当前容量大于等于需要的容量,那就没有必要进行扩展 */ private void ensureExplicitCapacity(int minCapacity) { modCount++; if (minCapacity - elementData.length > 0) grow(minCapacity); } /** * ArrayList最大容量 */ private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; /** * 对ArrayList进行扩容,minCapacity是需要的最小容量 * 默认容量扩展为原来的1.5倍,如果1.5倍还不够就扩展到所需最小的容量minCapacity大小 * 如果minCapacity大于MAX_ARRAY_SIZE且还没有溢出,就将容量设置为Integer.MAX_VALUE */ private void grow(int minCapacity) { // overflow-conscious code int oldCapacity = elementData.length; int newCapacity = oldCapacity + (oldCapacity >> 1); if (newCapacity - minCapacity < 0) newCapacity = minCapacity; if (newCapacity - MAX_ARRAY_SIZE > 0) newCapacity = hugeCapacity(minCapacity); // minCapacity is usually close to size, so this is a win: elementData = Arrays.copyOf(elementData, newCapacity); } private static int hugeCapacity(int minCapacity) { if (minCapacity < 0) // overflow throw new OutOfMemoryError(); return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE; } /** * 返回元素的个数 */ public int size() { return size; } /** * 返回元素个数是否为0 */ public boolean isEmpty() { return size == 0; } /** * 返回是否包含该元素 */ public boolean contains(Object o) { return indexOf(o) >= 0; } /** * 判断对象o在ArrayList中第一次出现的位置,从前往后找 */ public int indexOf(Object o) { if (o == null) { for (int i = 0; i < size; i++) if (elementData[i] == null) return i; } else { for (int i = 0; i < size; i++) if (o.equals(elementData[i])) return i; } return -1; } /** * 判断对象o在ArrayList中最后出现的位置,从后往前找 */ public int lastIndexOf(Object o) { if (o == null) { for (int i = size - 1; i >= 0; i--) if (elementData[i] == null) return i; } else { for (int i = size - 1; i >= 0; i--) if (o.equals(elementData[i])) return i; } return -1; } /** * 对现有的ArrayList进行克隆,但是里面的元素并没有被clone,是浅克隆 */ public Object clone() { try { ArrayList<?> v = (ArrayList<?>) super.clone(); v.elementData = Arrays.copyOf(elementData, size); v.modCount = 0; return v; } catch (CloneNotSupportedException e) { // this shouldn't happen, since we are Cloneable throw new InternalError(e); } } /** * 通过ArrayList得到一个数组 */ public Object[] toArray() { return Arrays.copyOf(elementData, size); } /** * 指定元素类型,通过ArrayList得到一个指定类型的数组 */ @SuppressWarnings("unchecked") public <T> T[] toArray(T[] a) { if (a.length < size) // Make a new array of a's runtime type, but my contents: return (T[]) Arrays.copyOf(elementData, size, a.getClass()); System.arraycopy(elementData, 0, a, 0, size); if (a.length > size) a[size] = null; return a; } // Positional Access Operations @SuppressWarnings("unchecked") E elementData(int index) { return (E) elementData[index]; } /** * 获取对应索引出的元素 */ public E get(int index) { rangeCheck(index); return elementData(index); } /** * 对某个索引赋值 */ public E set(int index, E element) { rangeCheck(index); E oldValue = elementData(index); elementData[index] = element; return oldValue; } /** * 新增一个元素,每次新增都要计算是否需要扩容 */ public boolean add(E e) { ensureCapacityInternal(size + 1); // Increments modCount!! elementData[size++] = e; return true; } /** * 在特定的索引位置加入一个元素 */ public void add(int index, E element) { rangeCheckForAdd(index); //先确认是否需要对容量进行扩充,同时还需要将modCount加1 ensureCapacityInternal(size + 1); // Increments modCount!! //将索引大于等于index的元素后移一位 System.arraycopy(elementData, index, elementData, index + 1, size - index); elementData[index] = element; size++; } /** * 删除特定索引的元素 */ public E remove(int index) { rangeCheck(index); modCount++; E oldValue = elementData(index); int numMoved = size - index - 1; if (numMoved > 0) //index后面的所有元素向前移动一位 System.arraycopy(elementData, index + 1, elementData, index, numMoved); //将最后一个索引为Size-1处的值设置为null,方便GC进行回收 elementData[--size] = null; return oldValue; } /** * 删除第一次出现的该元素,删除成功返回true */ public boolean remove(Object o) { if (o == null) { for (int index = 0; index < size; index++) if (elementData[index] == null) { fastRemove(index); return true; } } else { for (int index = 0; index < size; index++) if (o.equals(elementData[index])) { fastRemove(index); return true; } } return false; } /* * 和上面的remove()方法一样,只是没有返回值和不需要做边界校验 */ private void fastRemove(int index) { modCount++; int numMoved = size - index - 1; if (numMoved > 0) System.arraycopy(elementData, index + 1, elementData, index, numMoved); elementData[--size] = null; // clear to let GC do its work } /** * 清空ArrayList,将所有元素设置为null,将size设置为0 */ public void clear() { modCount++; // clear to let GC do its work for (int i = 0; i < size; i++) elementData[i] = null; size = 0; } /** * 在ArrayList中一次性添加多个元素 */ public boolean addAll(Collection<? extends E> c) { Object[] a = c.toArray(); int numNew = a.length; ensureCapacityInternal(size + numNew); // Increments modCount System.arraycopy(a, 0, elementData, size, numNew); size += numNew; return numNew != 0; } /** * 在某个index处插入一个集合 */ public boolean addAll(int index, Collection<? extends E> c) { rangeCheckForAdd(index); Object[] a = c.toArray(); int numNew = a.length; ensureCapacityInternal(size + numNew); // Increments modCount int numMoved = size - index; if (numMoved > 0) //将索引大于等于index的元素向后移动 System.arraycopy(elementData, index, elementData, index + numNew, numMoved); //将需要加入的数据设置到原数组中 System.arraycopy(a, 0, elementData, index, numNew); size += numNew; return numNew != 0; } /** * 删除一个范围内的所有元素 */ protected void removeRange(int fromIndex, int toIndex) { modCount++; int numMoved = size - toIndex; System.arraycopy(elementData, toIndex, elementData, fromIndex, numMoved); // clear to let GC do its work int newSize = size - (toIndex - fromIndex); for (int i = newSize; i < size; i++) { elementData[i] = null; } size = newSize; } /** * 校验下标是否越界 */ private void rangeCheck(int index) { if (index >= size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } /** * 在指定索引处添加元素时判断index是否越界 */ private void rangeCheckForAdd(int index) { if (index > size || index < 0) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } /** * 下标越界后打印的信息 */ private String outOfBoundsMsg(int index) { return "Index: " + index + ", Size: " + size; } /** * 删除ArrayList中两个集合的交集元素 */ public boolean removeAll(Collection<?> c) { //先判断传入的集合是否为null Objects.requireNonNull(c); //批量删除交集部分元素 return batchRemove(c, false); } /** * 保留ArrayList中两个集合的交集元素 */ public boolean retainAll(Collection<?> c) { Objects.requireNonNull(c); //批量删除非交集部分 return batchRemove(c, true); } /** *批量删除和保留两个集合的交集 */ private boolean batchRemove(Collection<?> c, boolean complement) { final Object[] elementData = this.elementData; int r = 0, w = 0; boolean modified = false; try { //如果complement为true就保留两个集合的交集元素 //如果complement为false就保留不在交集中的元素 for (; r < size; r++) if (c.contains(elementData[r]) == complement) elementData[w++] = elementData[r]; } finally { // Preserve behavioral compatibility with AbstractCollection, // even if c.contains() throws. // 如果r != size 则说明在上面的操作中可能报错了,需要在finally中进行处理。直接将r及以后的数据原样保留 if (r != size) { System.arraycopy(elementData, r, elementData, w, size - r); w += size - r; } if (w != size) {//w表示原ArrayList中能够保留下来的元素个数,保留的元素个数和原来的个数不等说明有变化,就需要修改size等属性 // clear to let GC do its work for (int i = w; i < size; i++) elementData[i] = null; modCount += size - w; size = w; modified = true; } } return modified; } /** * 将集合中的元素写入到输出流中 */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { // Write out element count, and any hidden stuff int expectedModCount = modCount; s.defaultWriteObject(); // Write out size as capacity for behavioural compatibility with clone() s.writeInt(size); // Write out all elements in the proper order. for (int i = 0; i < size; i++) { s.writeObject(elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } } /** * 将元素从输入流中读取到ArrayList中 */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { elementData = EMPTY_ELEMENTDATA; // Read in size, and any hidden stuff s.defaultReadObject(); // Read in capacity s.readInt(); // ignored if (size > 0) { // be like clone(), allocate array based upon size not capacity ensureCapacityInternal(size); Object[] a = elementData; // Read in all elements in the proper order. for (int i = 0; i < size; i++) { a[i] = s.readObject(); } } } /** * 返回一个下标从index开始后的list迭代器 */ public ListIterator<E> listIterator(int index) { if (index < 0 || index > size) throw new IndexOutOfBoundsException("Index: " + index); return new ListItr(index); } /** * 返回一个从下标0开始的list迭代器 */ public ListIterator<E> listIterator() { return new ListItr(0); } /** * 获取迭代器 */ public Iterator<E> iterator() { return new Itr(); } /** * 私有内部类定义迭代器 */ private class Itr implements Iterator<E> { int cursor; //游标记录了下一个元素的位置 int lastRet = -1; // index of last element returned; -1 if no such int expectedModCount = modCount; //如果下一个元素的位置不等于size,则说明还有下一个元素 public boolean hasNext() { return cursor != size; } @SuppressWarnings("unchecked") public E next() { checkForComodification(); int i = cursor; if (i >= size) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length)//这个集合被其他线程进行删除或者新增元素 throw new ConcurrentModificationException(); cursor = i + 1; return (E) elementData[lastRet = i]; } public void remove() { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.remove(lastRet); cursor = lastRet; lastRet = -1; expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } @Override @SuppressWarnings("unchecked") public void forEachRemaining(Consumer<? super E> consumer) { Objects.requireNonNull(consumer); final int size = ArrayList.this.size; int i = cursor; if (i >= size) { return; } final Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length) { throw new ConcurrentModificationException(); } while (i != size && modCount == expectedModCount) { consumer.accept((E) elementData[i++]); } // update once at end of iteration to reduce heap write traffic cursor = i; lastRet = i - 1; checkForComodification(); } final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } } /** * 私有内部类定义List迭代器,继承了上面的普通迭代器,并对功能进行了增强。list迭代器可以向前迭代 */ private class ListItr extends Itr implements ListIterator<E> { ListItr(int index) { super(); cursor = index; } //当前的游标不为0,说明前面至少还有下标为0的元素 public boolean hasPrevious() { return cursor != 0; } public int nextIndex() { return cursor; } public int previousIndex() { return cursor - 1; } @SuppressWarnings("unchecked") public E previous() { checkForComodification(); int i = cursor - 1; if (i < 0) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length) throw new ConcurrentModificationException(); cursor = i; return (E) elementData[lastRet = i]; } public void set(E e) { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.set(lastRet, e); } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void add(E e) { checkForComodification(); try { int i = cursor; ArrayList.this.add(i, e); cursor = i + 1; lastRet = -1; expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } } /** * 返回父集合的一个视图,通过fromInde,toIndex来控制视图的大小,如果fromInde == toIndex 则返回空list * 对父和子集合的非结构性修改都会影响到对方。 */ public List<E> subList(int fromIndex, int toIndex) { subListRangeCheck(fromIndex, toIndex, size); return new SubList(this, 0, fromIndex, toIndex); } /** * 对边界进行校验 */ static void subListRangeCheck(int fromIndex, int toIndex, int size) { if (fromIndex < 0) throw new IndexOutOfBoundsException("fromIndex = " + fromIndex); if (toIndex > size) throw new IndexOutOfBoundsException("toIndex = " + toIndex); if (fromIndex > toIndex) throw new IllegalArgumentException("fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")"); } private class SubList extends AbstractList<E> implements RandomAccess { private final AbstractList<E> parent; private final int parentOffset; private final int offset; int size; SubList(AbstractList<E> parent, int offset, int fromIndex, int toIndex) { this.parent = parent; this.parentOffset = fromIndex; this.offset = offset + fromIndex; this.size = toIndex - fromIndex; this.modCount = ArrayList.this.modCount; } public E set(int index, E e) { rangeCheck(index); checkForComodification(); E oldValue = ArrayList.this.elementData(offset + index); ArrayList.this.elementData[offset + index] = e; return oldValue; } public E get(int index) { rangeCheck(index); checkForComodification(); return ArrayList.this.elementData(offset + index); } public int size() { checkForComodification(); return this.size; } public void add(int index, E e) { rangeCheckForAdd(index); checkForComodification(); parent.add(parentOffset + index, e); // this.modCount = parent.modCount; this.size++; } public E remove(int index) { rangeCheck(index); checkForComodification(); E result = parent.remove(parentOffset + index); // this.modCount = parent.modCount; this.size--; return result; } protected void removeRange(int fromIndex, int toIndex) { checkForComodification(); // parent.removeRange(parentOffset + fromIndex, parentOffset + toIndex); // this.modCount = parent.modCount; this.size -= toIndex - fromIndex; } public boolean addAll(Collection<? extends E> c) { return addAll(this.size, c); } public boolean addAll(int index, Collection<? extends E> c) { rangeCheckForAdd(index); int cSize = c.size(); if (cSize == 0) return false; checkForComodification(); parent.addAll(parentOffset + index, c); // this.modCount = parent.modCount; this.size += cSize; return true; } public Iterator<E> iterator() { return listIterator(); } public ListIterator<E> listIterator(final int index) { checkForComodification(); rangeCheckForAdd(index); final int offset = this.offset; return new ListIterator<E>() { int cursor = index; int lastRet = -1; int expectedModCount = ArrayList.this.modCount; public boolean hasNext() { return cursor != SubList.this.size; } @SuppressWarnings("unchecked") public E next() { checkForComodification(); int i = cursor; if (i >= SubList.this.size) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (offset + i >= elementData.length) throw new ConcurrentModificationException(); cursor = i + 1; return (E) elementData[offset + (lastRet = i)]; } public boolean hasPrevious() { return cursor != 0; } @SuppressWarnings("unchecked") public E previous() { checkForComodification(); int i = cursor - 1; if (i < 0) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (offset + i >= elementData.length) throw new ConcurrentModificationException(); cursor = i; return (E) elementData[offset + (lastRet = i)]; } @SuppressWarnings("unchecked") public void forEachRemaining(Consumer<? super E> consumer) { Objects.requireNonNull(consumer); final int size = SubList.this.size; int i = cursor; if (i >= size) { return; } final Object[] elementData = ArrayList.this.elementData; if (offset + i >= elementData.length) { throw new ConcurrentModificationException(); } while (i != size && modCount == expectedModCount) { consumer.accept((E) elementData[offset + (i++)]); } // update once at end of iteration to reduce heap write // traffic lastRet = cursor = i; checkForComodification(); } public int nextIndex() { return cursor; } public int previousIndex() { return cursor - 1; } public void remove() { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { SubList.this.remove(lastRet); cursor = lastRet; lastRet = -1; expectedModCount = ArrayList.this.modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void set(E e) { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.set(offset + lastRet, e); } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void add(E e) { checkForComodification(); try { int i = cursor; SubList.this.add(i, e); cursor = i + 1; lastRet = -1; expectedModCount = ArrayList.this.modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } final void checkForComodification() { if (expectedModCount != ArrayList.this.modCount) throw new ConcurrentModificationException(); } }; } public List<E> subList(int fromIndex, int toIndex) { subListRangeCheck(fromIndex, toIndex, size); return new SubList(this, offset, fromIndex, toIndex); } private void rangeCheck(int index) { if (index < 0 || index >= this.size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private void rangeCheckForAdd(int index) { if (index < 0 || index > this.size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private String outOfBoundsMsg(int index) { return "Index: " + index + ", Size: " + this.size; } private void checkForComodification() { if (ArrayList.this.modCount != this.modCount) throw new ConcurrentModificationException(); } public Spliterator<E> spliterator() { checkForComodification(); return new ArrayListSpliterator<E>(ArrayList.this, offset, offset + this.size, this.modCount); } } /** * 遍历集合中的元素,并且对每个元素都进行处理 * ArrayList<String> list = new ArrayList<>(0); * ArrayList<String> list2 = new ArrayList<>(); * list.add("鱼香肉丝"); * list.add("辣子鸡丁"); * System.out.println(list); * list.forEach(s -> list2.add(s+"_")); * System.out.println(list2); * * result: * [鱼香肉丝, 辣子鸡丁] * [鱼香肉丝_, 辣子鸡丁_] * */ @Override public void forEach(Consumer<? super E> action) { Objects.requireNonNull(action); final int expectedModCount = modCount; @SuppressWarnings("unchecked") final E[] elementData = (E[]) this.elementData; final int size = this.size; for (int i = 0; modCount == expectedModCount && i < size; i++) { action.accept(elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } } /** * 用来多线程并行迭代的迭代器,这个迭代器的主要作用就是把集合分成了好几段,每个线程执行一段,因此是线程安全的。 */ @Override public Spliterator<E> spliterator() { return new ArrayListSpliterator<>(this, 0, -1, 0); } /** Index-based split-by-two, lazily initialized Spliterator */ static final class ArrayListSpliterator<E> implements Spliterator<E> { private final ArrayList<E> list; private int index; // current index, modified on advance/split private int fence; // -1 until used; then one past last index private int expectedModCount; // initialized when fence set /** Create new spliterator covering the given range */ ArrayListSpliterator(ArrayList<E> list, int origin, int fence, int expectedModCount) { this.list = list; // OK if null unless traversed this.index = origin; this.fence = fence; this.expectedModCount = expectedModCount; } private int getFence() { // initialize fence to size on first use int hi; // (a specialized variant appears in method forEach) ArrayList<E> lst; if ((hi = fence) < 0) { if ((lst = list) == null) hi = fence = 0; else { expectedModCount = lst.modCount; hi = fence = lst.size; } } return hi; } public ArrayListSpliterator<E> trySplit() { int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; return (lo >= mid) ? null : // divide range in half unless too small new ArrayListSpliterator<E>(list, lo, index = mid, expectedModCount); } public boolean tryAdvance(Consumer<? super E> action) { if (action == null) throw new NullPointerException(); int hi = getFence(), i = index; if (i < hi) { index = i + 1; @SuppressWarnings("unchecked") E e = (E) list.elementData[i]; action.accept(e); if (list.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } return false; } public void forEachRemaining(Consumer<? super E> action) { int i, hi, mc; // hoist accesses and checks from loop ArrayList<E> lst; Object[] a; if (action == null) throw new NullPointerException(); if ((lst = list) != null && (a = lst.elementData) != null) { if ((hi = fence) < 0) { mc = lst.modCount; hi = lst.size; } else mc = expectedModCount; if ((i = index) >= 0 && (index = hi) <= a.length) { for (; i < hi; ++i) { @SuppressWarnings("unchecked") E e = (E) a[i]; action.accept(e); } if (lst.modCount == mc) return; } } throw new ConcurrentModificationException(); } public long estimateSize() { return (long) (getFence() - index); } public int characteristics() { return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; } } /** * 删除符合条件的所有元素 * ArrayList<String> list = new ArrayList<>(0); * list.add("鱼香肉丝"); * list.add("辣子鸡丁"); * System.out.println(list); * list.removeIf(f -> f.contains("鱼")); * System.out.println(list); * * result:[鱼香肉丝, 辣子鸡丁] * [辣子鸡丁] */ @Override public boolean removeIf(Predicate<? super E> filter) { Objects.requireNonNull(filter); // figure out which elements are to be removed // any exception thrown from the filter predicate at this stage // will leave the collection unmodified int removeCount = 0; final BitSet removeSet = new BitSet(size); final int expectedModCount = modCount; final int size = this.size; for (int i = 0; modCount == expectedModCount && i < size; i++) { @SuppressWarnings("unchecked") final E element = (E) elementData[i]; if (filter.test(element)) { removeSet.set(i); removeCount++; } } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } // shift surviving elements left over the spaces left by removed // elements final boolean anyToRemove = removeCount > 0; if (anyToRemove) { final int newSize = size - removeCount; for (int i = 0, j = 0; (i < size) && (j < newSize); i++, j++) { i = removeSet.nextClearBit(i); elementData[j] = elementData[i]; } for (int k = newSize; k < size; k++) { elementData[k] = null; // Let gc do its work } this.size = newSize; if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } return anyToRemove; } /** * 将此列表的每个元素替换于运算符应用于该元素的结果, * 也就是说将集合中的每个元素用括号里面的表达式计算一遍,然后把结果替换原来的元素 * ArrayList<String> list = new ArrayList<>(); * list.add("1"); * list.add("2"); * System.out.println(list); * list.replaceAll(s -> s+0); * System.out.println(list); * 得到的结果:[1, 2] * [10, 20] * */ @Override @SuppressWarnings("unchecked") public void replaceAll(UnaryOperator<E> operator) { Objects.requireNonNull(operator); final int expectedModCount = modCount; final int size = this.size; for (int i = 0; modCount == expectedModCount && i < size; i++) { elementData[i] = operator.apply((E) elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } /** * 对ArrayList进行排序 */ @Override @SuppressWarnings("unchecked") public void sort(Comparator<? super E> c) { final int expectedModCount = modCount; Arrays.sort((E[]) elementData, 0, size, c); if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } }
二、ArrayList的源码分析
1、ArrayList<E> 继承了抽象类AbstractList<E>, 同时实现了 List<E>、RandomAccess、 Cloneable,、Serializable接口。
1.1、为什么既继承AbstractList<E>又实现List<E>?
大致的解释有三种:
① 在stackoverflow上有人问过作者Josh Bloch,作者回复说是一个mistake。
② 为了更直观的让人知道ArrayList实现了List接口,不需要通过父类一层层往上看。
③ 为了方便动态代理。
1.2、实现RandomAccess有什么用?
该接口是一个标记接口,其本身并没有任何方法需要实现。该接口表示它的实现类支持快速随机访问。ArrayList是基于数组实现,当然是支持快速随机访问的。
1.3、 实现Cloneable接口
Cloneable也是一个标记接口,其本身并没有任何方法需要实现。该接口用来标记一个类是否可以可以使用Object类的clone方法。如果一个类没有实现该接口,在使用clone方法的时候会
抛出CloneNotSupportedException异常。ArrayList的clone方法是浅克隆。
1.4、 实现Serializable接口
表示该类支持序列化和反序列化。
2、ArrayList的底层组成结构。
2.1、通过源码可知ArrayList底层是由数组组成。
/** * * 所有的容量为0的ArrayList对象来共享同一个空的数组 */ private static final Object[] EMPTY_ELEMENTDATA = {}; /** * 使用new ArrayList()构造方法创建Arraylist对象的时候没有指定容量大小,此时该对象就使用这个空数组。 * 之所以要和上面的空数组区分开,是为了在加入第一个元素的时候来区分如何扩展数组容量。 * 如果在加入元素之前是EMPTY_ELEMENTDATA,则加入第一个元素的后容量扩展为1, * 如果在加入元素之前是DEFAULTCAPACITY_EMPTY_ELEMENTDATA,则加入第一个元素后容量扩展为DEFAULT_CAPACITY */ private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {}; /** * 实际存储ArrayList元素的数组,该数组的大小就是当前ArrayList的容量 * 没有设计为私有是为了方便嵌套类的访问 */ transient Object[] elementData;
① EMPTY_ELEMENTDATA 是一个空数组,当除了使用new ArrayList()构造方法来创建对象时底层不是指向该数组,其余的时候当ArrayList容量为0时,就指向EMPTY_ELEMENTDATA 数组。
具体的情况有:
/**创建ArrayList指定容量为0时 */ public ArrayList(int initialCapacity) { if (initialCapacity > 0) { this.elementData = new Object[initialCapacity]; } else if (initialCapacity == 0) { this.elementData = EMPTY_ELEMENTDATA; } else { throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); } } /**用其他集合来创建ArrayList对象且传入集合为容量大小为0时 */ public ArrayList(Collection<? extends E> c) { elementData = c.toArray(); if ((size = elementData.length) != 0) { // c.toArray might (incorrectly) not return Object[] (see 6260652) if (elementData.getClass() != Object[].class) elementData = Arrays.copyOf(elementData, size, Object[].class); } else { // replace with empty array. this.elementData = EMPTY_ELEMENTDATA; } } /**当前集合元素个数为0,调用trimToSize方法后会指向该数组 */ public void trimToSize() { modCount++; if (size < elementData.length) { elementData = (size == 0) ? EMPTY_ELEMENTDATA : Arrays.copyOf(elementData, size); } }
/**从流中读取对象且读取到的对象个数为0时 */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { elementData = EMPTY_ELEMENTDATA; // Read in size, and any hidden stuff s.defaultReadObject(); // Read in capacity s.readInt(); // ignored if (size > 0) { // be like clone(), allocate array based upon size not capacity ensureCapacityInternal(size); Object[] a = elementData; // Read in all elements in the proper order. for (int i=0; i<size; i++) { a[i] = s.readObject(); } } }
② DEFAULTCAPACITY_EMPTY_ELEMENTDATA 只有在使用构造方法new ArrayList()创建对象时底层就指向该数组。之所以和EMPTY_ELEMENTDATA 数组区分开是为了在扩容的时候有所区别。
/**使用该构造方法创建对象的时候,底层指向该数组 */ public ArrayList() { this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA; }
③ elementData 指向实际存储元素的数组。
3、ArrayList的扩容机制
3.1、如果创建ArrayList对象的时候没有指定容量大小,那么ArrayList的初始容量为0,指定了初始容量或者使用其他集合来构建ArrayList对象,则容量为之指定的容量或构建的集合元素个数。
3.2、ArrayList底层是用数组来存储元素,当数组无法容纳更多的元素时就需要对数组进行扩容,扩容的方式简单粗暴,直接创建一个新的更大的数组,然后将老的数组的数据复制过去,最后elementData 指向新的数组,这样就完成了一次扩容。
ArrayList扩容有两种方式:
①手动调用ensureCapacity方法来进行扩容,如果一次性加入集合中的元素个数比较多的时候,就可以手动调用这个方法来确定是否要扩容或者扩容到多大,来减少扩容的次数。
②在向ArrayList中添加数据的时候,也需要调用ensureCapacityInternal方法来确认是否要对ArrayList进行扩容。
具体容量扩展的源码如下:
/** * 默认初始化容量 */ private static final int DEFAULT_CAPACITY = 10; /** * 这个是供外部调用,如果一次需要加入大量的元素的时候,可以手动调用此方法直接设置容量,避免多次自动扩容和数据复制 * 增加ArrayList对象的容量,来确保它至少能够容纳minCapacity个元素。 * 如果当前的ArrayList底层指向的不是DEFAULTCAPACITY_EMPTY_ELEMENTDATA数组且minCapacity要大于0那么就需要进一步确认是否扩容,看minCapacity是否大于当前容量 * 如果当前的ArrayList底层指向的是DEFAULTCAPACITY_EMPTY_ELEMENTDATA且需要扩容的值minCapacity大于10那么也需进一步确认是否扩容,通过后续要代码可知最终还是要扩容 */ public void ensureCapacity(int minCapacity) { int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA) // any size if not default element table ? 0 // larger than default for default empty table. It's already // supposed to be at default size. : DEFAULT_CAPACITY; if (minCapacity > minExpand) { ensureExplicitCapacity(minCapacity); } } /**这个是private方法,供内部调用 * 如果当前对象指向的数组是DEFAULTCAPACITY_EMPTY_ELEMENTDATA,则将DEFAULT_CAPACITY和minCapacity取最大值 */ private void ensureCapacityInternal(int minCapacity) { if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) { minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity); } ensureExplicitCapacity(minCapacity); } /** * 最后确认是否需要扩容,如果当前容量大于等于需要的容量,那就没有必要进行扩展 */ private void ensureExplicitCapacity(int minCapacity) { modCount++; if (minCapacity - elementData.length > 0) grow(minCapacity); } /** * ArrayList最大容量 */ private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; /** * 对ArrayList进行扩容,minCapacity是需要的最小容量 * 默认容量扩展为原来的1.5倍,如果1.5倍还不够就扩展到所需最小的容量minCapacity大小 * 如果minCapacity大于MAX_ARRAY_SIZE且还没有溢出,就将容量设置为Integer.MAX_VALUE */ private void grow(int minCapacity) { // overflow-conscious code int oldCapacity = elementData.length; int newCapacity = oldCapacity + (oldCapacity >> 1); if (newCapacity - minCapacity < 0) newCapacity = minCapacity; if (newCapacity - MAX_ARRAY_SIZE > 0) newCapacity = hugeCapacity(minCapacity); // minCapacity is usually close to size, so this is a win: elementData = Arrays.copyOf(elementData, newCapacity); } private static int hugeCapacity(int minCapacity) { if (minCapacity < 0) // overflow throw new OutOfMemoryError(); return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE; }
通过上面的源码可以看出通过new ArrayList()创建对象,初始的容量为0,在该集合中加入第一个元素的时候,由于容量不足需要扩容,由于此时底层指向的数组为DEFAULTCAPACITY_EMPTY_ELEMENTDATA,所以将容量扩展为DEFAULT_CAPACITY 也就是10。第二次增加元素的时候,由于需要的容量比现在的 容量小所以不用扩容。直到添加第11个元素的时候,容量不够,此时需要进行扩容,扩容为原来的1.5倍,也就是15。
4、ArrayList增加、删除和查找元素
通过源码可以看到ArrayList的增加需要扩容并且进行数据复制;同样删除一个元素的时候需要将后面的所有元素向前移动一位并将最后一个元素置为null方便垃圾回收,这也需要进行数据的复制。所以ArrayList增加和删除元素的效率都不高。
但是由于ArrayList是基于数组的,所以可以快速随机遍历,这样查找某个位置的元素就十分方便,查找效率很高。
综上所述,ArrayList增删慢查询快,适合在增加和删除比较少且查询比较多的环境下使用。
5、ArrayList迭代器
ArrayList内部定义了两个私有迭代器类可以对ArrayList进行迭代它们分别是普通迭代器Itr和list迭代器ListItr
5.1、普通迭代器Itr:
定义了一个指针cursor来指向下一个元素,这个指针初始值为0,也就是指向第一个元素,最大值为size,也就是指向最后一个元素的后面(没有指向任何元素)。当cursor == size的时候,说明所有的元素已经遍历完成,已经没有下一个元素。指针cursor只能向后移动不能向前移动。
lastRet:用来表示最后遍历的一个元素的下标,默认是-1,也就是没有遍历。
5.2、list迭代器ListItr:
ListItr继承了lsit,同时也对cursor进行了增强,可以向前或者向后进行遍历。