Subset Sum 问题单个物品重量限制前提下的更优算法
前言
看了 ShanLunjiaJian 关于这个问题的文章,是完全没看懂,沙东队爷的中枢神经内核配置把我偏序了。叉姐在下面提了个论文,论文找不到资源,谁搞到了可以 Q 我一份之类的拜谢了。然后找到了这个可能是阅读笔记或者是翻译的的东西,这下算是看懂了。
感觉还是很有意思,对于 DP 的状态设计、优化思路等都有很大启发,所以写一下。
(有单个物品重量限制的)Subset Sum 问题
ShanLunjiaJian 把这个叫做 Knapsack,我是要批判的,因为感觉上是带不了权的啊,这不是Knapsack!
那么描述一下这个问题:给定
低论
这个问题显然有一个做法,叫做把它当作一个普通 Knapsack 问题,时间复杂度
高论
首先这个问题有一个经典贪心做法,叫做给所有元素从小到大排个序,然后选一个前缀使得再多选一个就会超过容量限制。这个做法当然是错的,但是可以基于它给出的这个既有选择方法去做调整,那么这样一来,剩余容量就是
现在我们面临的问题是什么呢?我们的 DP 可能出现负数重量了(因为要支持取消选择一些原本选了的物品),这种条件下,要去维持我的剩余容量始终保持
考虑一个直觉,是不是可以这样去操作:当试图去取消一个原先选的物品(也就是选负数)的时候,一定要让当前容量是超额的;当去选正数的时候,一定要让当前容量是不满的。考虑最优解是不是一定能用这种方式构造出来——显然是可以的。证明可以这样想,假设我从贪心生成的“基础解”开始,按照某个顺序去把它修正成最优解,是不是每一步都一定能按照上述规则操作。那么可以这样想:如果现在容量是超额的,但是不存在某个元素使得“最优解中没选它,当前解中选了它”,那么最优解选择的集合一定包含当前解,它的容量就一定也是超额的,矛盾,所以一定有办法去进行操作。反之亦然,因此按照这样的规则操作,必然能得到某种最优解。更棒的是,在这样操作的过程中,剩余容量始终在
先设计一个朴素 DP。设贪心得到的分界点为
注意到这是一个值为 Boolean 类型的 DP,如果发现某一维具有单调性,那么就可以压缩掉这维。可以观察到:如果
整体按照
注意到只有转移 (3) 的复杂度不对,而这个转移很大程度上是重复的——某些转移过程,在
后记
有人问有什么应用?我不知道啊。这么基础的东西一定有很多应用前景吧!(心虚)
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 25岁的心里话
· 按钮权限的设计及实现