CF1034D Intervals of Intervals
简要题意
给定 \(n\) 个区间组成的序列,定义它的一个连续段的价值为这个段内所有区间的并覆盖的长度。求价值前 \(k\) 大的段的价值和。
数据范围:\(1\le n\le 3\times 10^5, 1\le k\le \min\{\frac{n(n-1)}{2}, 10^9\}\)。
题解
考虑一个经典问题,\(q\) 次询问求某个连续段的价值。考虑离线,动态维护对于当前右端点,每个左端点的答案。考虑一个位置最后一次被覆盖是在第 \(t\) 个区间,那么对于所有 \(1\le l\le t\) 这个位置都会贡献 \(1\)。那么考虑将右端点右移一位时如何维护。显然类似珂朵莉树,可以证明修改段的次数是均摊 \(\mathrm O(n)\)。那么直接考虑用线段树,修改段等价于一次区间加。总时间复杂度 \(\mathrm O(n\log n)\)。把线段树换成主席树,可以做到在线询问。
接着考虑这题,容易想到先找到排名为 \(k\) 的连续段的价值,就很好做了,那么二分答案,转化为计数价值大于 \(X\) 的连续段。考虑一个结论:\(V(L_i, R_i + 1)\ge V(L_i, R_i) \ge V(L_i + 1, R_i)\)。则存在 \(pos(r, X)\) 为最大的 \(l\) 使得 \(V(l, r) > X\)。同时容易得出,\(V(r, X)\) 关于 \(r\) 单增。通过一个指针维护,把珂朵莉树放在二分外面,预处理出每个 \(r\) 增加的区间,用前缀和维护即可,时间复杂度 \(\mathrm O(n\log n)\)。