《DSP using MATLAB》Problem 8.3
代码:
%% ------------------------------------------------------------------------ %% Output Info about this m-file fprintf('\n***********************************************************\n'); fprintf(' <DSP using MATLAB> Problem 8.3 \n\n'); banner(); %% ------------------------------------------------------------------------ % Given resonat frequency and 3dB bandwidth delta_omega = 0.05; omega_r = 2*pi*0.375; r = 1 - delta_omega / 2 omega0 = acos(2*r*cos(omega_r)/(1+r*r)) % digital resonator %r = 0.8 %r = 0.9 %r = 0.99 %omega0 = pi/4; % corresponding system function Direct form % zeros at z=±1 G = (1-r)*sqrt(1+r*r-2*r*cos(2*omega0)) / sqrt(2*(1-cos(2*omega0))) % gain parameter b = G*[1 0 -1]; % denominator a = [1 -2*r*cos(omega0) r*r]; % numerator % precise resonant frequency and 3dB bandwidth omega_r = acos((1+r*r)*cos(omega0)/(2*r)); delta_omega = 2*(1-r); fprintf('\nResonant Freq is : %.4fpi unit, 3dB bandwidth is %.4f \n', omega_r/pi,delta_omega); % [db, mag, pha, grd, w] = freqz_m(b, a); figure('NumberTitle', 'off', 'Name', 'Problem 8.3 Digital Resonator') set(gcf,'Color','white'); subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -60 10]); set(gca,'YTickMode','manual','YTick',[-60,-30,0]) set(gca,'YTickLabelMode','manual','YTickLabel',['60';'30';' 0']); set(gca,'XTickMode','manual','XTick',[0,0.75,1,1.25,2]); xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB'); subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]); xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute'); set(gca,'XTickMode','manual','XTick',[0,0.75,1,1.25,2]); set(gca,'YTickMode','manual','YTick',[0,1.0]); subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians'); subplot(2,2,4); plot(w/pi, grd*pi/180); grid on; %axis([0 1 -100 10]); xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay'); set(gca,'XTickMode','manual','XTick',[0,0.75,1,1.25,2]); %set(gca,'YTickMode','manual','YTick',[0,1.0]); figure('NumberTitle', 'off', 'Name', 'Problem 8.3 Pole-Zero Plot') set(gcf,'Color','white'); zplane(b,a); title(sprintf('Pole-Zero Plot, r=%.3f %.2f\\pi',r,omega_r/pi)); %pzplotz(b,a); % Impulse Response fprintf('\n----------------------------------'); fprintf('\nPartial fraction expansion method: \n'); [R, p, c] = residuez(b,a) MR = (abs(R))' % Residue Magnitude AR = (angle(R))'/pi % Residue angles in pi units Mp = (abs(p))' % pole Magnitude Ap = (angle(p))'/pi % pole angles in pi units [delta, n] = impseq(0,0,200); h_chk = filter(b,a,delta); % check sequences %h = ( 0.8.^n ) .* (2*0.232*cos(pi*n/4) - 2*0.0509*sin(pi*n/4)) -0.283 * delta; % r=0.8 %h = ( 0.9.^n ) .* (2*0.1063*cos(pi*n/4) - 2*0.0112*sin(pi*n/4)) -0.1174 * delta; % r=0.9 %h = ( 0.99.^n ) .* (2*0.0101*cos(pi*n/4) - 2*0.0001*sin(pi*n/4)) -0.0102 * delta; % r=0.99 h = ( 0.975.^n ) .* (2*0.0253*cos(pi*n*3/4) - 2*0.0006*sin(pi*n*3/4)) -0.026 * delta; % r=0.975 figure('NumberTitle', 'off', 'Name', 'Problem 8.3 Digital Resonator, h(n) by filter and Inv-Z ') set(gcf,'Color','white'); subplot(2,1,1); stem(n, h_chk); grid on; %axis([0 2 -60 10]); xlabel('n'); ylabel('h\_chk'); title('Impulse Response sequences by filter'); subplot(2,1,2); stem(n, h); grid on; %axis([0 1 -100 10]); xlabel('n'); ylabel('h'); title('Impulse Response sequences by Inv-Z'); [db, mag, pha, grd, w] = freqz_m(h, [1]); figure('NumberTitle', 'off', 'Name', 'Problem 8.3 Digital Resonator, h(n) by Inv-Z ') set(gcf,'Color','white'); subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -60 10]); set(gca,'YTickMode','manual','YTick',[-60,-30,0]) set(gca,'YTickLabelMode','manual','YTickLabel',['60';'30';' 0']); set(gca,'XTickMode','manual','XTick',[0,0.75,1,1.25,2]); xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB'); subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]); xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute'); set(gca,'XTickMode','manual','XTick',[0,0.75,1,1.25,2]); set(gca,'YTickMode','manual','YTick',[0,1.0]); subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians'); subplot(2,2,4); plot(w/pi, grd*pi/180); grid on; %axis([0 1 -100 10]); xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay'); set(gca,'XTickMode','manual','XTick',[0,0.75,1,1.25,2]); %set(gca,'YTickMode','manual','YTick',[0,1.0]);
运行结果:
系统函数部分分式展开,查表求逆z变换就可得到h(n)
零极点的模和幅角
将脉冲序列当成输入得到h_chk(n),系统函数求逆z变换得到h(n),
二者幅度谱、相位谱、群延迟对比如下,可见,幅度谱一样,相位谱和群延迟有所不同。
牢记:
1、如果你决定做某事,那就动手去做;不要受任何人、任何事的干扰。2、这个世界并不完美,但依然值得我们去为之奋斗。