《DSP using MATLAB》Problem 8.1
代码:
%% ------------------------------------------------------------------------ %% Output Info about this m-file fprintf('\n***********************************************************\n'); fprintf(' <DSP using MATLAB> Problem 8.1 \n\n'); banner(); %% ------------------------------------------------------------------------ % digital resonator %r = 0.8 %r = 0.9 r = 0.99 omega0 = pi/4; % corresponding system function Direct form b0 = (1-r)*sqrt(1+r*r-2*r*cos(2*omega0)); % gain parameter b = [b0 0 0]; % denominator a = [1 -2*r*cos(omega0) r*r]; % numerator % precise resonant frequency and 3dB bandwidth omega_r = acos((1+r*r)*cos(omega0)/(2*r)); delta_omega = 2*(1-r); fprintf('\nResonant Freq is : %.4fpi unit, 3dB bandwidth is %.4f \n', omega_r/pi,delta_omega); % [db, mag, pha, grd, w] = freqz_m(b, a); figure('NumberTitle', 'off', 'Name', 'Problem 8.1 Digital Resonator') set(gcf,'Color','white'); subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -60 10]); set(gca,'YTickMode','manual','YTick',[-60,-30,0]) set(gca,'YTickLabelMode','manual','YTickLabel',['60';'30';' 0']); set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75]); xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB'); subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]); xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute'); set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]); set(gca,'YTickMode','manual','YTick',[0,1.0]); subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians'); subplot(2,2,4); plot(w/pi, grd*pi/180); grid on; %axis([0 1 -100 10]); xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay'); set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]); %set(gca,'YTickMode','manual','YTick',[0,1.0]); figure('NumberTitle', 'off', 'Name', 'Problem 8.1 Pole-Zero Plot') set(gcf,'Color','white'); zplane(b,a); title(sprintf('Pole-Zero Plot, r=%.2f 0.25\\pi',r)); %pzplotz(b,a); % Impulse Response fprintf('\n----------------------------------'); fprintf('\nPartial fraction expansion method: \n'); [R, p, c] = residuez(b,a) MR = (abs(R))' % Residue Magnitude AR = (angle(R))'/pi % Residue angles in pi units Mp = (abs(p))' % pole Magnitude Ap = (angle(p))'/pi % pole angles in pi units [delta, n] = impseq(0,0,40); h_chk = filter(b,a,delta); % check sequences %h = 2*0.1281* ( (0.5657*1.414) .^n) .* (cos(pi*n/4) + sin(pi*n/4)); % r=0.8 %h = 2*0.0673* ( (0.6364*1.414) .^n) .* (cos(pi*n/4) + sin(pi*n/4)); % r=0.9 h = 2*0.0070* ( (0.7000*1.414) .^n) .* (cos(pi*n/4) + sin(pi*n/4)); % r=0.99 figure('NumberTitle', 'off', 'Name', 'Problem 8.1 Digital Resonator, h(n) by filter and Inv-Z ') set(gcf,'Color','white'); subplot(2,1,1); stem(n, h_chk); grid on; %axis([0 2 -60 10]); xlabel('n'); ylabel('h\_chk'); title('Impulse Response sequences by filter'); subplot(2,1,2); stem(n, h); grid on; %axis([0 1 -100 10]); xlabel('n'); ylabel('h'); title('Impulse Response sequences by Inv-Z'); [db, mag, pha, grd, w] = freqz_m(h, [1]); figure('NumberTitle', 'off', 'Name', 'Problem 8.1 Digital Resonator, h(n) by Inv-Z ') set(gcf,'Color','white'); subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -60 10]); set(gca,'YTickMode','manual','YTick',[-60,-30,0]) set(gca,'YTickLabelMode','manual','YTickLabel',['60';'30';' 0']); set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75]); xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB'); subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]); xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute'); set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]); %set(gca,'YTickMode','manual','YTick',[0,1.0]); subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians'); subplot(2,2,4); plot(w/pi, grd*pi/180); grid on; %axis([0 1 -100 10]); xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay'); set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]); %set(gca,'YTickMode','manual','YTick',[0,1.0]);
运行结果:
系统函数部分分式展开,
零极点的模和幅角:
用脉冲序列当输入得到脉冲响应序列h_chk(n),系统函数H(z)取逆z变换得h(n),二者如下图
h_chk(n)的幅度谱、相位谱、群延迟
h(n)的幅度谱、相位谱、群延迟
r=0.9、0.99的图这里就不放了。
牢记:
1、如果你决定做某事,那就动手去做;不要受任何人、任何事的干扰。2、这个世界并不完美,但依然值得我们去为之奋斗。