标签整理

1. MapReduce与mysql连接总结

应用场景:

  在项目中会遇到输入结果集很大,但是输出结果很小,比如一些 pv、uv 数据,然后为了实时查询的需求,或者一些 OLAP 的需求,我们需要 mapreduce 与 mysql 进行数据的交互,而这些是 hbase 或者 hive 目前亟待改进的地方。

1.从mysql中

读数据:

  Hadoop访问关系数据库主要通过一下接口实现的:DBInputFormat类,包所在位置:org.apache.hadoop.mapred.lib.db 中。DBInputFormat 在 Hadoop 应用程序中通过数据库供应商提供的 JDBC接口来与数据库进行交互,并且可以使用标准的 SQL 来读取数据库中的记录。学习DBInputFormat首先必须知道二个条件。

  1. 在使用 DBInputFormat 之前,必须将要使用的 JDBC 驱动拷贝到分布式系统各个节点的$HADOOP_HOME/lib/目录下。

  2. MapReduce访问关系数据库时,大量频繁的从MapReduce程序中查询和读取数据,这大大的增加了数据库的访问负载,因此,DBInputFormat接口仅仅适合读取小数据量的数据,而不适合处理数据仓库。要处理数据仓库的方法有:利用数据库的Dump工具将大量待分析的数据输出为文本,并上传的Hdfs中进行处理,处理的方法可参考:http://www.cnblogs.com/liqizhou/archive/2012/05/15/2501835.html

写数据:

   往往对于数据处理的结果的数据量一般不会太大,可能适合hadoop直接写入数据库中。hadoop提供了相应的数据库直接输出的计算发结果。

    1.   DBOutFormat: 提供数据库写入接口。
    2.   DBRecordWriter:提供向数据库中写入的数据记录的接口。
    3. DBConfiguration:提供数据库配置和创建链接的接口

2.Hive常见命令

  Hive常用的SQL命令操作 

  Hive导出查询内容:  INSERT OVERWRITE LOCAL DIRECTORY  '/tmp/result.txt' select id,name from t_test; 

             hive -e"select id,name from t_test;"> result.txt

连接hive的三种方式:

  1.cli  本质上是每个连接都存放一个元数据,各个之间都不相同,不适合做产品的开发和应用

  2.JDBC连接的方式,容易被大数据量冲挂,不稳定

  3. 直接利用Hive的 Driver class 来直接连接  Driver driver = new Driver(new HiveConf(SessionState.class));

远程连接Hive

  hive --service hiveserver -p 50000 &  

  打开50000端口,然后java就可以使用java连了,将所需的jar包做个标记

 

HQL结果直接导入mysql

1、首先下载mysql-connector-java jar包。

2、在hive cli端添加必要jar:

add jar /home/hadoop/hive-0.12.0/lib/hive-contrib-0.12.0.jar;

add jar /home/hadoop/hive-0.12.0/lib/mysql-connector-java-5.1.27-bin.jar;

3、给指点方法弄个简称:

CREATE TEMPORARY FUNCTION dboutput AS 'org.apache.hadoop.hive.contrib.genericudf.example.GenericUDFDBOutput';

4、执行:

select dboutput('jdbc:mysql://localhost:port/dbname','db_username','db_pwd','INSERT INTO mysql_table(field1,field2,field3) VALUES (6,?,?)',substr(field_i,1,10),count(field_j)) from hive_table group by substr(field_i,1,10) limit 10;

问题:

发现总提示找不到org.apache.Hadoop.hive.contrib.genericudf.example.GenericUDFDBOutput

解决办法:

后来经过琢磨才弄明白org.apache.Hadoop.hive.contrib.genericudf.example.GenericUDFDBOutput部分自己要去编写,编写后打成jar包 用add jar添加进去就可以了。

 

Python连接Hive
import sys
from hive_service import ThriftHive
from hive_service.ttypes import HiveServerException
from thrift import Thrift
from thrift.transport import TSocket
from thrift.transport import TTransport
from thrift.protocol import TBinaryProtocol

try:
    transport = TSocket.TSocket('192.168.30.201', 10000)
    transport = TTransport.TBufferedTransport(transport)
    protocol = TBinaryProtocol.TBinaryProtocol(transport)

    client = ThriftHive.Client(protocol)
    transport.open()
    hql = '''CREATE TABLE people(a STRING, b INT, c DOUBLE) row format delimited fields terminated by ',' '''
    print hql

    client.execute(hql)
    client.execute("LOAD DATA LOCAL INPATH '/home/diver/data.txt' INTO TABLE people")
    #client.execute("SELECT * FROM people")
    #while (1):
    #  row = client.fetchOne()
    #  if (row == None):
    #    break
    #  print row
    client.execute("SELECT count(*) FROM people")
    print client.fetchAll()

    transport.close()

except Thrift.TException, tx:
    print '%s' % (tx.message)

  

#!/usr/bin/python
#-*-coding:UTF-8 -*-
import sys
import os
import string
import re
import MySQLdb

from hive_service import ThriftHive
from hive_service.ttypes import HiveServerException
from thrift import Thrift
from thrift.transport import TSocket
from thrift.transport import TTransport
from thrift.protocol import TBinaryProtocol

def hiveExe(hsql,dbname):
#定义hive查询函数
                try:
                                transport = TSocket.TSocket('192.168.10.1', 10000)
                                transport = TTransport.TBufferedTransport(transport)
                                protocol = TBinaryProtocol.TBinaryProtocol(transport)

                                client = ThriftHive.Client(protocol)
                                transport.open()

                                client.execute('ADD jar /opt/modules/hive/hive-0.7.1/lib/hive-contrib-0.7.1.jar')

                                client.execute("use "+dbname)
                                row = client.fetchOne()
                                #使用库名,只需一次fetch,用fetchOne

                                client.execute(hsql)
                                return client.fetchAll()
                                #查询所有数据,用fetchAll()

                                transport.close()

                except Thrift.TException, tx:
                                print '%s' % (tx.message)

def mysqlExe(sql):
                try:
                                conn = MySQLdb.connect(user="test",passwd="test123",host="127.0.0.1",db="active2_ip",port=5029)
                except Exception,data:
                                print "Could not connect to MySQL server.:",data
                try:
                                cursor = conn.cursor()
                                cursor.execute(sql)
                                return row
                                cursor.commit()
                                cursor.close()
                                conn.close()
                except Exception,data:
                                print "Could not Fetch anything:",data

dbname = "active2"
date = os.popen("date -d '1 day ago' +%Y%m%d").read().strip()
#shell方式取昨天日期,读取并去前后\n
date.close()

sql = "create table IF NOT EXISTS "+dbname+"_group_ip_"+date+" like "+dbname+"_group_ip;load data infile '/tmp/"+dbname+"_"+date+".csv' into table "+dbname+"_group_ip_"+date+" FIELDS TERMINATED BY ','"
#以模板表创建日期表,并load data到该表中

hsql = "insert overwrite local directory '/tmp/"+dbname+"_"+date+"' select count(version) as vc,stat_hour,type,version,province,city,isp from "+dbname+"_"+date+" group by province,city,version,type,stat_hour,isp"
#hive查询,并将查询结果导出到本地/tmp/active2_20111129目录下,可能生成多个文件

hiveExe(hsql, dbname)
#执行查询

os.system("sudo cat /tmp/"+dbname+"_"+date+"/* > /tmp/tmplog ")
#将多个文件通过shell合并为一个文件tmplog

file1 = open("/tmp/tmplog", 'r')
#打开合并后的临时文件
file2 = open("/tmp/"+dbname+"_"+date+".csv",'w')
#打开另一个文件,做文字替换。因为hive导出结果,其分隔符为特殊字符。所以需要做替换,格式为csv,故用逗号分隔
sep = ','
for line in file1:
                tmp = line[:-1].split('\x01')
                #hive导出文件分隔符为ascii中的001,\x01是16进制,但其实也就是十进制的1
                replace = sep.join(tmp)
                file2.write(replace+"\n")


file1.close()
file2.close()

os.system("sudo rm -f /tmp/tmplog")
#删除临时的tmplog

mysqlExe(sql)
#执行mysql查询,创建表和加载数据。
os.system("sudo rm -f /tmp/"+dbname+"_"+date)

 Thrift是Apache的一个开源的跨语言服务开发框架,它提供了一个代码生成引擎来构建服务,支持C++,Java,Python,PHP,Ruby,Erlang,Perl,Haskell,C#,Cocoa,JavaScript,Node.js,Smalltalk,OCaml,Delphi等多种编程语言。

一般来说,使用Thrift来开发应用程序,主要建立在两种场景下:

  • 第一,在我们开发过程中,一个比较大的项目需要多个团队进行协作,而每个团队的成员在编程技术方面的技能可能不一定相同,为了实现这种跨语言的开发氛围,使用Thrift来构建服务
  • 第二,企业之间合作,在业务上不可避免出现跨语言的编程环境,使用Thrift可以达到类似Web Services的跨平台的特性

Python就是用Thrift来连接Hive的

#!/bin/sh
# 一键安装thrift-0.9.0的脚本
# thrift依赖boost、openssl和libevent
# 下面的变量值可以根据实现做修改
PROJECT_HOME=$HOME/iflow # 项目源码主目录
# thrift及依赖的第三方库源码包存放目录和安装目录,
# 一键脚本要和第三方库源码包放在同一个目录下
THIRD_PARTY_HOME=$PROJECT_HOME/third-party
boost=boost_1_52_0
openssl=openssl-1.0.1c
libevent=libevent-2.0.19-stable
thrift=thrift-0.9.0
#
# 安装boost
#
printf "n33[0;32;34minstalling boost33[mn"
tar xzf $boost.tar.gz
cd $boost
./bootstrap.sh
if test $? -ne 0; then
exit 1
fi
./b2 install --prefix=$THIRD_PARTY_HOME/boost
printf "n33[0;32;34m./b2 install return $?33[mn"
cd -
#
# 安装openssl
#
printf "n33[0;32;34minstalling openssl33[mn"
tar xzf $openssl.tar.gz
cd $openssl
./config --prefix=$THIRD_PARTY_HOME/openssl shared threads
if test $? -ne 0; then
exit 1
fi
make
if test $? -ne 0; then
exit 1
fi
make install
cd -
#
# 安装libevent
#
printf "n33[0;32;34minstalling libevent33[mn"
tar xzf $libevent.tar.gz
cd $libevent
./configure --prefix=$THIRD_PARTY_HOME/libevent
if test $? -ne 0; then
exit 1
fi
make
if test $? -ne 0; then
exit 1
fi
make install
cd -
#
# 安装thrift
#
printf "n33[0;32;34minstalling thrift33[mn"
tar xzf $thrift.tar.gz
cd $thrift
# 按照常规的configure,使用--with-openssl,会遇到
# “Error: libcrypto required.”错误,这里使用CPPFLAGS和LDFLAGS替代
./configure --prefix=$THIRD_PARTY_HOME/thrift
           --with-boost=$THIRD_PARTY_HOME/boost
           --with-libevent=$THIRD_PARTY_HOME/libevent
           CPPFLAGS="-I$THIRD_PARTY_HOME/openssl/include"
           LDFLAGS="-ldl -L$THIRD_PARTY_HOME/openssl/lib"
           --with-qt4=no --with-c_glib=no --with-csharp=no
           --with-java=no --with-erlang=no --with-python=no
           --with-perl=no --with-ruby=no --with-haskell=no
           --with-go=no --with-d=no
if test $? -ne 0; then
exit 1
fi
# 完成上述修改后,configure可以成功了,但还需要下面修改,
# 否则make时会报malloc未声明
sed -i -e 's!#define HAVE_MALLOC 0!#define HAVE_MALLOC 1!' config.h
sed -i -e 's!#define HAVE_REALLOC 0!#define HAVE_REALLOC 1!' config.h
sed -i -e 's!#define malloc rpl_malloc!/*#define malloc rpl_malloc*/!' config.h
sed -i -e 's!#define realloc rpl_realloc!/*#define realloc rpl_realloc*/!' config.h
make
if test $? -ne 0; then
exit 1
fi
make install
cd -
# 安装成功提示一下
printf "n33[0;32;34minstall SUCCESS33[mn"

 hive的结果导入到mysql报错 参考 Hiveserver和Hiveserver2的区别

 1、sqoop依赖zookeeper所以必须配置ZOOKEEPER_HOME到环境变量中。

2、sqoop-1.2.0-CDH3B4依赖hadoop-core-0.20.2-CDH3B4.jar所以你需要下载hadoop-0.20.2-CDH3B4.tar.gz解压缩后将hadoop-0.20.2-CDH3B4/hadoop-core-0.20.2-CDH3B4.jar复制到sqoop-1.2.0-CDH3B4/lib中。

3、sqoop导入mysql数据运行过程中依赖mysql-connector-java-.jar所以你需要下载mysql-connector-java-.jar并复制到sqoop-1.2.0-CDH3B4/lib中。 

利用udf函数将Hive统计结果直接插入到MySQL
http://www.linuxidc.com/Linux/2013-04/82878.htm

Python脚本将Hive的结果保存到MySQL
http://pslff.diandian.com/post ... 08648

 

hive的insert操作小结 分区及导出

insert 语法格式为:

1. 基本的插入语法:
insert overwrite table tablename [partition(partcol1=val1,partclo2=val2)] select_statement;
insert into table tablename [partition(partcol1=val1,partclo2=val2)] select_statement;
eg:
insert overwrite table test_insert select * from test_table;
insert into table test_insert select * from test_table;
注:
overwrite重写,into追加。

2. 对多个表进行插入操作:
from source_table
insert overwrite table tablename1 [partition (partcol1=val1,partclo2=val2)] select_statement1
insert overwrite table tablename2 [partition (partcol1=val1,partclo2=val2)] select_statement2
eg:
from test_table                     
insert overwrite table test_insert1 
select key
insert overwrite table test_insert2
select value;
注:hive不支持用insert语句一条一条的进行插入操作,也不支持update操作。数据是以load的方式加载到建立好的表中,数据一旦导入就不可以修改。

2.通过查询将数据保存到filesystem
insert overwrite [local] directory 'directory' select_statement;
eg:
(1)导入数据到本地目录:
insert overwrite local directory '/home/hadoop/data' select * from test_insert1;
产生的文件会覆盖指定目录中的其他文件,即将目录中已经存在的文件进行删除。
只能用overwrite,into错误!
(2)导出数据到HDFS中:
insert overwrite directory '/user/hive/warehouse/table' select value from test_table;
只能用overwrite,into错误!
(3)同一个查询结果可以同时插入到多个表或者多个目录中:
from source_table
insert overwrite local directory '/home/hadoop/data' select * 
insert overwrite directory '/user/hive/warehouse/table' select value;

3. 小结:
(1)insert命令主要用于将hive中的数据导出,导出的目的地可以是hdfs或本地filesysytem,导入什么数据在于书写的select语句。
(2)overwrite与into:
insert overwrite/into table 可以搭配;
insert overwrite directory 可以搭配;

 Hive的安装详解 重在思路 Beeline 

向前看,其实很多人都也只是接触的那些,看谁更有远见,才能抄近路,数据不在大小,关键在于价值

1.安装

yum install hive相关包
hive相关包如下:
hive – base package that provides the complete language and runtime (required)
hive-metastore – provides scripts for running the metastore as a standalone service (optional)
hive-server – provides scripts for running the original HiveServer as a standalone service (optional)
hive-server2 – provides scripts for running the new HiveServer2 as a standalone service (optional)

2.配置MySQL作为hive元数据库
1)创建数据库
$ mysql -u root -p
Enter password:
mysql> CREATE DATABASE metastore;
mysql> USE metastore;
mysql> SOURCE /usr/lib/hive/scripts/metastore/upgrade/mysql/hive-schema-0.10.0.mysql.sql;
2)创建用户/分配权限
mysql> CREATE USER ‘hive’@’metastorehost’ IDENTIFIED BY ‘mypassword';
…
mysql> REVOKE ALL PRIVILEGES, GRANT OPTION FROM ‘hive’@’metastorehost';
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,LOCK TABLES,EXECUTE ON metastore.* TO ‘hive’@’metastorehost';
mysql> FLUSH PRIVILEGES;
mysql> quit;

3.配置hive-site.xml
a)基础配置(配置为远程模式)

<property>
  <name>javax.jdo.option.ConnectionURL</name>
  <value>jdbc:mysql://192.168.1.52:3306/metastore</value>
  <description>the URL of the MySQL database</description>
</property>
<property>
  <name>javax.jdo.option.ConnectionDriverName</name>
  <value>com.mysql.jdbc.Driver</value>
</property>
<property>
  <name>javax.jdo.option.ConnectionUserName</name>
  <value>hive</value>
</property>
<property>
  <name>javax.jdo.option.ConnectionPassword</name>
  <value>hive</value>
</property>
<property>
  <name>datanucleus.autoCreateSchema</name>
  <value>false</value>
</property>
<property>
  <name>datanucleus.fixedDatastore</name>
  <value>true</value>
</property>
<property>
  <name>datanucleus.autoStartMechanism</name>
  <value>SchemaTable</value>
</property>
<property>
  <name>hive.metastore.uris</name>
  <value>thrift://192.168.1.57:9083</value>
  <description>IP address (or fully-qualified domain name) and port of the metastore host</description>
</property>
其中hive.metastore.uris配置表明使用第三种方式(远程模式)使用hive。
注意:hive.metastore.local在hive0.10后不必须配置,如果配置了上面的参数。

4.配置使用hiveserver2
在hive-site.xml中配置下面选项:

 <property>
  <name>hive.support.concurrency</name>
  <description>Enable Hive's Table Lock Manager Service</description>
  <value>true</value>
</property>
<property>
  <name>hive.zookeeper.quorum</name>
  <description>Zookeeper quorum used by Hive's Table Lock Manager</description>
  <value>zk1.myco.com,zk2.myco.com,zk3.myco.com</value>
</property>
注意:没用配置hive.zookeeper.quorum会导致无法并发执行hive ql请求和导致数据异常

Enabling the Table Lock Manager without specifying a list of valid Zookeeper quorum nodes will result in unpredictable behavior. Make sure that both properties are properly configured.
5.安装Zookeeper
由于hiveserver2的表锁管理器需要依赖Zookeeper,因此需要安装Zookeeper启动Zookeeper,详情可以参看文章“Zookeeper安装”
启动集群的Zookeeper,如果Zookeeper不是默认的端口,则需要显示配置参数:hive.zookeeper.client.port。

6启动服务
1)启动hive-metastore
启动metadata服务:
sudo service hive-metastore start 或者:hive –service metastore
启动后的端口默认为9083
2)启动hive-server2
启动hiveserver2:
sudo service hive-server2 start
3)测试
使用beeline控制台连接hive-server2:
/usr/bin/beeline
>!connect jdbc:hive2://localhost:10000 -n hive -p hive org.apache.hive.jdbc.HiveDriver
执行,show tables等命令查看结果。

附1:beeline参数

Usage: java org.apache.hive.cli.beeline.BeeLine 
   -u                the JDBC URL to connect to
   -n                    the username to connect as
   -p                    the password to connect as
   -d                the driver class to use
   -e                       query that should be executed
   -f                        script file that should be executed
   --color=[true/false]            control whether color is used for display
   --showHeader=[true/false]       show column names in query results
   --headerInterval=ROWS;          the interval between which heades are displayed
   --fastConnect=[true/false]      skip building table/column list for tab-completion
比较有用的参数:
–fastConnect=true Building list of tables and columns for tab-completion (set fastconnect to true to skip)…(确实有效)
–isolation 设置事务的隔离级别
例子:
执行sql语句方式:
beeline -u jdbc:hive2://localhost:10000 -n hdfs -p hdfs -e “show tables”
执行sql文件方式:
beeline -u jdbc:hive2://localhost:10000 -n hdfs -p hdfs -f hiveql_test.sql

附录2:hive-server1和hive-server2的区别
Hiveserver1 和hiveserver2的JDBC区别:
HiveServer version               Connection URL                    Driver Class

HiveServer2                          jdbc:hive2://:                          org.apache.hive.jdbc.HiveDriver
HiveServer1                          jdbc:hive://:                            org.apache.hadoop.hive.jdbc.HiveDriver

  

 

posted @ 2015-09-04 21:37  晋心  阅读(418)  评论(0编辑  收藏  举报