sparkStreaming 读kafka的数据

目标:sparkStreaming每2s中读取一次kafka中的数据,进行单词计数。

topic:topic1

broker list:192.168.1.126:9092,192.168.1.127:9092,192.168.1.128:9092

1、首先往一个topic中实时生产数据。

  代码如下: 代码功能:每秒向topic1发送一条消息,一条消息里包含4个单词,单词之间用空格隔开。

 

 1 package kafkaProducer
 2 
 3 import java.util.HashMap
 4 
 5 import org.apache.kafka.clients.producer._
 6 
 7 
 8 object KafkaProducer {
 9 def main(args: Array[String]) {
10   val topic="topic1"
11   val brokers="192.168.1.126:9092,192.168.1.127:9092,192.168.1.128:9092"
12   val messagesPerSec=1 //每秒发送几条信息  
13   val wordsPerMessage =4 //一条信息包括多少个单词  
14   // Zookeeper connection properties  
15     val props = new HashMap[String, Object]()  
16     props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers)  
17     props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,  
18       "org.apache.kafka.common.serialization.StringSerializer")  
19     props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,  
20       "org.apache.kafka.common.serialization.StringSerializer")  
21     val producer = new KafkaProducer[String, String](props) 
22     // Send some messages  
23      while(true) {  
24       (1 to messagesPerSec.toInt).foreach { messageNum =>  
25         val str = (1 to wordsPerMessage.toInt).map(x => scala.util.Random.nextInt(10).toString)  
26           .mkString(" ")  
27         val message = new ProducerRecord[String, String](topic, null, str)  
28         producer.send(message)  
29         println(message)  
30       }  
31       Thread.sleep(1000)  
32     }  
33   }  
34 }

 打包运行命令:hadoop jar jar包  (注意jar包是可运行的jar包)

消费者消费命令: ./kafka-console-consumer.sh  --zookeeper zk01:2181,zk02:2181  --topic topic1 --from-beginning

可以正常消费。

2、编写SparkStreaming代码读kafka中的数据,每2s读一次

  代码如下:

 1 package kafkaSparkStream
 2 
 3 import org.apache.spark.SparkConf
 4 import org.apache.spark.streaming.StreamingContext
 5 import org.apache.spark.streaming.Seconds
 6 import org.apache.spark.streaming.kafka.KafkaUtils
 7 import kafka.serializer.StringDecoder
 8 /**
 9  * sparkStreaming读取kafka中topic的数据
10  */
11 object KafkaToSpark {
12 def main(args: Array[String]) {
13   if (args.length<2) {
14   System.err.println("Usage: <brokers> <topics>");
15   System.exit(1)
16   }
17   val Array(brokers,topics)=args
18   //2s从kafka中读取一次
19   val conf=new SparkConf().setAppName("KafkaToSpark");
20   val scc=new StreamingContext(conf,Seconds(2))
21   // Create direct kafka stream with brokers and topics  
22   val topicSet=topics.split(",").toSet
23   val kafkaParams=Map[String,String]("metadata.broker.list"->brokers)
24   //获取信息
25   val messages=KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](
26       scc,kafkaParams,topicSet)
27   // Get the lines, split them into words, count the words and print 
28  val lines= messages.map(_._2)
29  val words=lines.flatMap(_.split(" "))
30  val wordCouts=words.map(x =>(x,1L)).reduceByKey(_+_)
31  wordCouts.print
32  //开启计算
33  scc.start()
34  scc.awaitTermination()
35 }
36 
37 }

 打包运行命令:./spark-submit --class kafkaSparkStream.KafkaToSpark --master yarn-client /home/hadoop/sparkJar/kafkaToSpark.jar 192.168.1.126:9092,192.168.1.127:9092,192.168.1.128:9092 topic1

运行成功!

posted @ 2017-09-13 09:37  kwz  Views(961)  Comments(0Edit  收藏  举报