POJ - 3070 Fibonacci 矩阵快速幂取模
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 9776 | Accepted: 6964 |
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
刚刚学习了快速幂和矩阵快速幂,然后就找了个例题,根据题目的一个快速计算斐波那契数列的方法在利用矩阵快速幂模板,0ms水过
#include <iostream> #include <cstdio> #include <cmath> #include <cstring> #include <cstdlib> #include <algorithm> using namespace std; const int MAXN = 2; struct Mat { int a[MAXN][MAXN]; } ; Mat Multi(const Mat x, const Mat y, const int Mod) { Mat res; memset(res.a, 0, sizeof(res.a)); for(int i = 0; i < MAXN; i++) for(int j = 0; j < MAXN; j++) for(int k = 0; k < MAXN; k++) res.a[i][j] = (res.a[i][j] + x.a[i][k] * y.a[k][j]) % Mod; return res; } Mat Power(Mat base, int k, const int Mod) { Mat res; memset(res.a, 0, sizeof(res.a)); for(int i = 0; i < MAXN; i++) res.a[i][i] = 1; while(k > 0) { if(k & 1) res = Multi(res, base, Mod); base = Multi(base, base, Mod); k = k >> 1; } return res; } int main() { int mod = 10000; int n; Mat base; base.a[0][0] = base.a[1][0] = base.a[0][1] = 1; base.a[1][1] = 0; while(cin >> n, n!=-1) { Mat res = Power(base, n, mod); printf("%d\n", res.a[0][1]); } return 0; }