【网络基础】SSL/TLS协议运行机制的概述
1 前言
互联网的通信安全,建立在SSL/TLS协议之上。
本文简要介绍SSL/TLS协议的运行机制。文章的重点是设计思想和运行过程,不涉及具体的实现细节。如果想了解这方面的内容,请参阅RFC文档。
2 概述
SSL证书是一个二进制文件,里面包含经过认证的网站公钥和一些元数据,要从经销商购买。
证书有很多类型,首先分为三种认证级别。
- 域名认证(Domain Validation):最低级别认证,可以确认申请人拥有这个域名。对于这种证书,浏览器会在地址栏显示一把锁。
- 公司认证(Company Validation):确认域名所有人是哪一家公司,证书里面会包含公司信息。
- 扩展认证(Extended Validation):最高级别的认证,浏览器地址栏会显示公司名。
还分为三种覆盖范围。
- 单域名证书:只能用于单一域名,
foo.com
的证书不能用于www.foo.com
- 通配符证书:可以用于某个域名及其所有一级子域名,比如
*.foo.com
的证书可以用于foo.com
,也可以用于www.foo.com
- 多域名证书:可以用于多个域名,比如
foo.com
和bar.com
认证级别越高、覆盖范围越广的证书,价格越贵。
不使用SSL/TLS的HTTP通信,就是不加密的通信。所有信息明文传播,带来了三大风险。
(1) 窃听风险(eavesdropping):第三方可以获知通信内容。
(2) 篡改风险(tampering):第三方可以修改通信内容。
(3) 冒充风险(pretending):第三方可以冒充他人身份参与通信。
SSL/TLS协议是为了解决这三大风险而设计的,希望达到:
(1) 所有信息都是加密传播,第三方无法窃听。
(2) 具有校验机制,一旦被篡改,通信双方会立刻发现。
(3) 配备身份证书,防止身份被冒充。
互联网是开放环境,通信双方都是未知身份,这为协议的设计带来了很大的难度。而且,协议还必须能够经受所有匪夷所思的攻击,这使得SSL/TLS协议变得异常复杂。
3 历史
互联网加密通信协议的历史,几乎与互联网一样长。
1994年,NetScape公司设计了SSL协议(Secure Sockets Layer)的1.0版,但是未发布。
1995年,NetScape公司发布SSL 2.0版,很快发现有严重漏洞。
1996年,SSL 3.0版问世,得到大规模应用。
1999年,互联网标准化组织ISOC接替NetScape公司,发布了SSL的升级版TLS 1.0版。
2006年和2008年,TLS进行了两次升级,分别为TLS 1.1版和TLS 1.2版。最新的变动是2011年TLS 1.2的修订版。
目前,应用最广泛的是TLS 1.0,接下来是SSL 3.0。但是,主流浏览器都已经实现了TLS 1.2的支持。
TLS 1.0通常被标示为SSL 3.1,TLS 1.1为SSL 3.2,TLS 1.2为SSL 3.3。
4 基本的运行过程
SSL/TLS协议的基本思路是采用公钥加密法,也就是说,客户端先向服务器端索要公钥,然后用公钥加密信息,服务器收到密文后,用自己的私钥解密。
但是,这里有两个问题。
(1)如何保证公钥不被篡改?
解决方法:将公钥放在数字证书中。只要证书是可信的,公钥就是可信的。
(2)公钥加密计算量太大,如何减少耗用的时间?
解决方法:每一次对话(session),客户端和服务器端都生成一个"对话密钥"(session key),用它来加密信息。由于"对话密钥"是对称加密,所以运算速度非常快,而服务器公钥只用于加密"对话密钥"本身,这样就减少了加密运算的消耗时间。
因此,SSL/TLS协议的基本过程是这样的:
(1) 客户端向服务器端索要并验证公钥。
(2) 双方协商生成"对话密钥"。
(3) 双方采用"对话密钥"进行加密通信。
上面过程的前两步,又称为"握手阶段"(handshake)。
5 握手阶段的详细过程
"握手阶段"涉及四次通信,我们一个个来看。需要注意的是,"握手阶段"的所有通信都是明文的。
5.1 客户端发出请求(ClientHello)
首先,客户端(通常是浏览器)先向服务器发出加密通信的请求,这被叫做ClientHello请求。
在这一步,客户端主要向服务器提供以下信息。
(1) 支持的协议版本,比如TLS 1.0版。
(2) 一个客户端生成的随机数,稍后用于生成"对话密钥"。
(3) 支持的加密方法,比如RSA公钥加密。
(4) 支持的压缩方法。
这里需要注意的是,客户端发送的信息之中不包括服务器的域名。也就是说,理论上服务器只能包含一个网站,否则会分不清应该向客户端提供哪一个网站的数字证书。这就是为什么通常一台服务器只能有一张数字证书的原因。
对于虚拟主机的用户来说,这当然很不方便。2006年,TLS协议加入了一个Server Name Indication扩展,允许客户端向服务器提供它所请求的域名。
5.2 服务器回应(SeverHello)
服务器收到客户端请求后,向客户端发出回应,这叫做SeverHello。服务器的回应包含以下内容。
(1) 确认使用的加密通信协议版本,比如TLS 1.0版本。如果浏览器与服务器支持的版本不一致,服务器关闭加密通信。
(2) 一个服务器生成的随机数,稍后用于生成"对话密钥"。
(3) 确认使用的加密方法,比如RSA公钥加密。
(4) 服务器证书。
除了上面这些信息,如果服务器需要确认客户端的身份,就会再包含一项请求,要求客户端提供"客户端证书"。比如,金融机构往往只允许认证客户连入自己的网络,就会向正式客户提供USB密钥,里面就包含了一张客户端证书。
5.3 客户端回应
客户端收到服务器回应以后,首先验证服务器证书。如果证书不是可信机构颁布、或者证书中的域名与实际域名不一致、或者证书已经过期,就会向访问者显示一个警告,由其选择是否还要继续通信。
如果证书没有问题,客户端就会从证书中取出服务器的公钥。然后,向服务器发送下面三项信息。
(1) 一个随机数。该随机数用服务器公钥加密,防止被窃听。
(2) 编码改变通知,表示随后的信息都将用双方商定的加密方法和密钥发送。
(3) 客户端握手结束通知,表示客户端的握手阶段已经结束。这一项同时也是前面发送的所有内容的hash值,用来供服务器校验。
上面第一项的随机数,是整个握手阶段出现的第三个随机数,又称"pre-master key"。有了它以后,客户端和服务器就同时有了三个随机数,接着双方就用事先商定的加密方法,各自生成本次会话所用的同一把"会话密钥"。
至于为什么一定要用三个随机数,来生成"会话密钥",dog250解释得很好:
"不管是客户端还是服务器,都需要随机数,这样生成的密钥才不会每次都一样。由于SSL协议中证书是静态的,因此十分有必要引入一种随机因素来保证协商出来的密钥的随机性。
对于RSA密钥交换算法来说,pre-master-key本身就是一个随机数,再加上hello消息中的随机,三个随机数通过一个密钥导出器最终导出一个对称密钥。
pre master的存在在于SSL协议不信任每个主机都能产生完全随机的随机数,如果随机数不随机,那么pre master secret就有可能被猜出来,那么仅适用pre master secret作为密钥就不合适了,因此必须引入新的随机因素,那么客户端和服务器加上pre master secret三个随机数一同生成的密钥就不容易被猜出了,一个伪随机可能完全不随机,可是是三个伪随机就十分接近随机了,每增加一个自由度,随机性增加的可不是一。"
此外,如果前一步,服务器要求客户端证书,客户端会在这一步发送证书及相关信息。
5.4 服务器的最后回应
服务器收到客户端的第三个随机数pre-master key之后,计算生成本次会话所用的"会话密钥"。然后,向客户端最后发送下面信息。
(1)编码改变通知,表示随后的信息都将用双方商定的加密方法和密钥发送。
(2)服务器握手结束通知,表示服务器的握手阶段已经结束。这一项同时也是前面发送的所有内容的hash值,用来供客户端校验。
至此,整个握手阶段全部结束。接下来,客户端与服务器进入加密通信,就完全是使用普通的HTTP协议,只不过用"会话密钥"加密内容。
7 举个例子
开始加密通信之前,客户端和服务器首先必须建立连接和交换参数,这个过程叫做握手(handshake)。
假定客户端叫做爱丽丝,服务器叫做鲍勃,整个握手过程可以用下图说明(点击看大图)。
握手阶段分成五步。
第一步,爱丽丝给出协议版本号、一个客户端生成的随机数(Client random),以及客户端支持的加密方法。
第二步,鲍勃确认双方使用的加密方法,并给出数字证书、以及一个服务器生成的随机数(Server random)。
第三步,爱丽丝确认数字证书有效,然后生成一个新的随机数(Premaster secret),并使用数字证书中的公钥,加密这个随机数,发给鲍勃。
第四步,鲍勃使用自己的私钥,获取爱丽丝发来的随机数(即Premaster secret)。
第五步,爱丽丝和鲍勃根据约定的加密方法,使用前面的三个随机数,生成"对话密钥"(session key),用来加密接下来的整个对话过程。
上面的五步,画成一张图,就是下面这样。
8 引申
8.1 DH算法的握手阶段
整个握手阶段都不加密(也没法加密),都是明文的。因此,如果有人窃听通信,他可以知道双方选择的加密方法,以及三个随机数中的两个。整个通话的安全,只取决于第三个随机数(Premaster secret)能不能被破解。
虽然理论上,只要服务器的公钥足够长(比如2048位),那么Premaster secret可以保证不被破解。但是为了足够安全,我们可以考虑把握手阶段的算法从默认的RSA算法,改为 Diffie-Hellman算法(简称DH算法)。
采用DH算法后,Premaster secret不需要传递,双方只要交换各自的参数,就可以算出这个随机数。
上图中,第三步和第四步由传递Premaster secret变成了传递DH算法所需的参数,然后双方各自算出Premaster secret。这样就提高了安全性。
8.2 session的恢复
握手阶段用来建立SSL连接。如果出于某种原因,对话中断,就需要重新握手。
这时有两种方法可以恢复原来的session:一种叫做session ID,另一种叫做session ticket。
session ID的思想很简单,就是每一次对话都有一个编号(session ID)。如果对话中断,下次重连的时候,只要客户端给出这个编号,且服务器有这个编号的记录,双方就可以重新使用已有的"对话密钥",而不必重新生成一把。
上图中,客户端给出session ID,服务器确认该编号存在,双方就不再进行握手阶段剩余的步骤,而直接用已有的对话密钥进行加密通信。
session ID是目前所有浏览器都支持的方法,但是它的缺点在于session ID往往只保留在一台服务器上。所以,如果客户端的请求发到另一台服务器,就无法恢复对话。session ticket就是为了解决这个问题而诞生的,目前只有Firefox和Chrome浏览器支持。
上图中,客户端不再发送session ID,而是发送一个服务器在上一次对话中发送过来的session ticket。这个session ticket是加密的,只有服务器才能解密,其中包括本次对话的主要信息,比如对话密钥和加密方法。当服务器收到session ticket以后,解密后就不必重新生成对话密钥了。
9 小结
好啦,本节我们就看到这里哈,有理解不对的地方欢迎指正哈。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· Obsidian + DeepSeek:免费 AI 助力你的知识管理,让你的笔记飞起来!
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了