redis源码--LRU实现

Redis 的淘汰机制

Redis可以看作是一个内存数据库,可以通过Maxmemory指令配置Redis的数据集使用指定量的内存。设置maxmemory为0,则表示无限制(这是64位系统的默认行为,而32位系统使用3GB内隐记忆极限)。

maxmemory 100mb
当内存使用达到maxmemory极限时,需要使用某种淘汰算法来决定清理掉哪些数据,以保证新数据的存入。

常用的淘汰算法:

FIFO:First In First Out,先进先出。判断被存储的时间,离目前最远的数据优先被淘汰。
LRU:Least Recently Used,最近最少使用。判断最近被使用的时间,目前最远的数据优先被淘汰。
LFU:Least Frequently Used,最不经常使用。在一段时间内,数据被使用次数最少的,优先被淘汰。
Redis提供的淘汰策略:

noeviction:达到内存限额后返回错误,客户尝试可以导致更多内存使用的命令(大部分写命令,但DEL和一些例外)
allkeys-lru:为了给新增加的数据腾出空间,驱逐键先试图移除一部分最近使用较少的(LRC)。
volatile-lru:为了给新增加的数据腾出空间,驱逐键先试图移除一部分最近使用较少的(LRC),但只限于过期设置键。
allkeys-random: 为了给新增加的数据腾出空间,驱逐任意键
volatile-random: 为了给新增加的数据腾出空间,驱逐任意键,但只限于有过期设置的驱逐键。
volatile-ttl: 为了给新增加的数据腾出空间,驱逐键只有秘钥过期设置,并且首先尝试缩短存活时间的驱逐键

 

基于 HashMap 和 双向链表实现 LRU 

整体的设计思路是,可以使用 HashMap 存储 key,这样可以做到 save 和 get key的时间都是 O(1),而 HashMap 的 Value 指向双向链表实现的 LRU 的 Node 节点,如图所示。


LRU 存储是基于双向链表实现的,下面的图演示了它的原理。其中 h 代表双向链表的表头,t 代表尾部。首先预先设置 LRU 的容量,如果存储满了,可以通过 O(1) 的时间淘汰掉双向链表的尾部,每次新增和访问数据,都可以通过 O(1)的效率把新的节点增加到对头,或者把已经存在的节点移动到队头。

下面展示了,预设大小是 3 的,LRU存储的在存储和访问过程中的变化。为了简化图复杂度,图中没有展示 HashMap部分的变化,仅仅演示了上图 LRU 双向链表的变化。我们对这个LRU缓存的操作序列如下:

save("key1", 7)

save("key2", 0)

save("key3", 1)

save("key4", 2)

get("key2")

save("key5", 3)

get("key2")

save("key6", 4)

相应的 LRU 双向链表部分变化如下:

总结一下核心操作的步骤:

save(key, value),首先在 HashMap 找到 Key 对应的节点,如果节点存在,更新节点的值,并把这个节点移动队头。如果不存在,需要构造新的节点,并且尝试把节点塞到队头,如果LRU空间不足,则通过 tail 淘汰掉队尾的节点,同时在 HashMap 中移除 Key。
get(key),通过 HashMap 找到 LRU 链表节点,把节点插入到队头,返回缓存的值。
完整基于 Java 的代码参考如下

class DLinkedNode {
    String key;
    int value;
    DLinkedNode pre;
    DLinkedNode post;
}
LRU Cache

public class LRUCache {
   
    private Hashtable<Integer, DLinkedNode>
            cache = new Hashtable<Integer, DLinkedNode>();
    private int count;
    private int capacity;
    private DLinkedNode head, tail;
 
    public LRUCache(int capacity) {
        this.count = 0;
        this.capacity = capacity;
 
        head = new DLinkedNode();
        head.pre = null;
 
        tail = new DLinkedNode();
        tail.post = null;
 
        head.post = tail;
        tail.pre = head;
    }
 
    public int get(String key) {
 
        DLinkedNode node = cache.get(key);
        if(node == null){
            return -1; // should raise exception here.
        }
 
        // move the accessed node to the head;
        this.moveToHead(node);
 
        return node.value;
    }
 
 
    public void set(String key, int value) {
        DLinkedNode node = cache.get(key);
 
        if(node == null){
 
            DLinkedNode newNode = new DLinkedNode();
            newNode.key = key;
            newNode.value = value;
 
            this.cache.put(key, newNode);
            this.addNode(newNode);
 
            ++count;
 
            if(count > capacity){
                // pop the tail
                DLinkedNode tail = this.popTail();
                this.cache.remove(tail.key);
                --count;
            }
        }else{
            // update the value.
            node.value = value;
            this.moveToHead(node);
        }
    }
    /**
     * Always add the new node right after head;
     */
    private void addNode(DLinkedNode node){
        node.pre = head;
        node.post = head.post;
 
        head.post.pre = node;
        head.post = node;
    }
 
    /**
     * Remove an existing node from the linked list.
     */
    private void removeNode(DLinkedNode node){
        DLinkedNode pre = node.pre;
        DLinkedNode post = node.post;
 
        pre.post = post;
        post.pre = pre;
    }
 
    /**
     * Move certain node in between to the head.
     */
    private void moveToHead(DLinkedNode node){
        this.removeNode(node);
        this.addNode(node);
    }
 
    // pop the current tail.
    private DLinkedNode popTail(){
        DLinkedNode res = tail.pre;
        this.removeNode(res);
        return res;
    }

redis中lru实现

如果按照HashMap和双向链表实现,需要额外的存储存放 next 和 prev 指针,牺牲比较大的存储空间,显然是不划算的。所以Redis采用了一个近似的做法,就是随机取出若干个key,然后按照访问时间排序后,淘汰掉最不经常使用的,具体分析如下:

为了支持LRU,Redis 2.8.19中使用了一个全局的LRU时钟,server.lruclock,定义如下,

#define REDIS_LRU_BITS 24
unsigned lruclock:REDIS_LRU_BITS; /* Clock for LRU eviction */

默认的LRU时钟的分辨率是1秒,可以通过改变REDIS_LRU_CLOCK_RESOLUTION宏的值来改变,Redis会在serverCron()中调用updateLRUClock定期的更新LRU时钟,更新的频率和hz参数有关,默认为100ms一次,如下,

#define REDIS_LRU_CLOCK_MAX ((1<<REDIS_LRU_BITS)-1) /* Max value of obj->lru */
#define REDIS_LRU_CLOCK_RESOLUTION 1 /* LRU clock resolution in seconds */
 
void updateLRUClock(void) {
    server.lruclock = (server.unixtime / REDIS_LRU_CLOCK_RESOLUTION) &
                                                REDIS_LRU_CLOCK_MAX;
}

server.unixtime是系统当前的unix时间戳,当 lruclock 的值超出REDIS_LRU_CLOCK_MAX时,会从头开始计算,所以在计算一个key的最长没有访问时间时,可能key本身保存的lru访问时间会比当前的lrulock还要大,这个时候需要计算额外时间,如下,

/* Given an object returns the min number of seconds the object was never
 * requested, using an approximated LRU algorithm. */
unsigned long estimateObjectIdleTime(robj *o) {
    if (server.lruclock >= o->lru) {
        return (server.lruclock - o->lru) * REDIS_LRU_CLOCK_RESOLUTION;
    } else {
        return ((REDIS_LRU_CLOCK_MAX - o->lru) + server.lruclock) *
                    REDIS_LRU_CLOCK_RESOLUTION;
    }
}

Redis支持和LRU相关淘汰策略包括,

volatile-lru 设置了过期时间的key参与近似的lru淘汰策略
allkeys-lru 所有的key均参与近似的lru淘汰策略
当进行LRU淘汰时,Redis按如下方式进行的,

......
            /* volatile-lru and allkeys-lru policy */
            else if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU ||
                server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU)
            {
                for (k = 0; k < server.maxmemory_samples; k++) {
                    sds thiskey;
                    long thisval;
                    robj *o;
 
                    de = dictGetRandomKey(dict);
                    thiskey = dictGetKey(de);
                    /* When policy is volatile-lru we need an additional lookup
                     * to locate the real key, as dict is set to db->expires. */
                    if (server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU)
                        de = dictFind(db->dict, thiskey);
                    o = dictGetVal(de);
                    thisval = estimateObjectIdleTime(o);
 
                    /* Higher idle time is better candidate for deletion */
                    if (bestkey == NULL || thisval > bestval) {
                        bestkey = thiskey;
                        bestval = thisval;
                    }
                }
            }
            ......

Redis会基于server.maxmemory_samples配置选取固定数目的key,然后比较它们的lru访问时间,然后淘汰最近最久没有访问的key,maxmemory_samples的值越大,Redis的近似LRU算法就越接近于严格LRU算法,但是相应消耗也变高,对性能有一定影响,样本值默认为5。

posted @ 2019-03-09 19:13  車輪の唄  阅读(12)  评论(0编辑  收藏  举报  来源