平均感知机实现词性标注
1. AveragedPerceptron.py
class AveragedPerceptron(object):
'''An averaged perceptron, as implemented by Matthew Honnibal.
See more implementation details here:
http://honnibal.wordpress.com/2013/09/11/a-good-part-of-speechpos-tagger-in-about-200-lines-of-python/
'''
def __init__(self):
# Each feature gets its own weight vector, so weights is a dict-of-dicts
self.weights = {} # 每个'位置'拥有一个权值向量
self.classes = set()
# 累加的权值,用于计算平均权值
# 生成了一个默认为0的带key的数据字典
self._totals = defaultdict(int)
# The last time the feature was changed, for the averaging. Also
# keyed by feature/clas tuples
# (tstamps is short for timestamps)
self._tstamps = defaultdict(int) # 上次更新权值时的i
# 记录实例的数量
self.i = 0
self.iii = 0 # 自己测试用
def predict(self, features):
'''Dot-product the features and current weights and return the best label.'''
scores = defaultdict(float) # 生成一个默认dict,不存在的值返0.0
for feat, value in features.items():
if feat not in self.weights or value == 0:
continue
weights = self.weights[feat]
for label, weight in weights.items():
scores[label] += value * weight # 每次预测一个特征值时该值都会重置
# Do a secondary alphabetic sort, for stability
return max(self.classes, key=lambda label: (scores[label], label)) # 返回得分最高的词性标签,如果得分相同取字母大的
def update(self, truth, guess, features):
'''Update the feature weights.'''
def upd_feat(c, f, w, v):
param = (f, c)
self._totals[param] += (self.i - self._tstamps[param]) * w # 累加:(此时的i - 上次更新该权值时的i)*权值
self._tstamps[param] = self.i # 记录更新此权值时的i
self.weights[f][c] = w + v # 更新权值
self.i += 1 # 一个word对应于一个features,每处理一个word后i值+1
if truth == guess:
return None
for f in features: # 遍历特征值,对每个特征值都加入当前判断正确和错误的词性,以及各自权值
weights = self.weights.setdefault(f, {}) # 如果字典中包含有给定键,则返回该键对应的值,否则返回为该键设置的值,并将键值加入字典中,注意和get方法的区别
upd_feat(truth, f, weights.get(truth, 0.0), 1.0)
upd_feat(guess, f, weights.get(guess, 0.0), -1.0)
'''以下为自己测试用'''
f_tmp = "bias"
cla = "zz1_np1@\n"
param_tmp = (f_tmp, cla)
if f == f_tmp:
tmp = self.weights.get(f_tmp, None)
logging.info(self._totals[("bias", "zz1_np1@\n")])
if tmp != None:
logging.info(self.weights.get(f_tmp).get(cla))
else:
logging.info(None)
logging.info("*******************************" + str(self.i) + "****" + str(self._tstamps[param_tmp]))
self.iii += 1
return None
def average_weights(self):
'''Average weights from all iterations.'''
for feat, weights in self.weights.items():
new_feat_weights = {}
for clas, weight in weights.items():
param = (feat, clas)
total = self._totals[param]
total += (self.i - self._tstamps[param]) * weight
averaged = round(total / float(self.i), 3)
if averaged:
new_feat_weights[clas] = averaged # 向字典中加入key-value
self.weights[feat] = new_feat_weights
return None
def save(self, path):
'''Save the pickled model weights.'''
return pickle.dump(dict(self.weights), open(path, 'w'))
def load(self, path):
'''Load the pickled model weights.'''
self.weights = pickle.load(open(path))
return None
def train(nr_iter, examples):
'''Return an averaged perceptron model trained on ``examples`` for
``nr_iter`` iterations.
'''
model = AveragedPerceptron()
for i in range(nr_iter):
random.shuffle(examples)
for features, class_ in examples:
scores = model.predict(features)
guess, score = max(scores.items(), key=lambda i: i[1])
if guess != class_:
model.update(class_, guess, features)
model.average_weights()
return model
2.PerceptronTagger.py
from __future__ import absolute_import
import os
import random
from collections import defaultdict
import pickle
import logging
from AveragedPerceptron import AveragedPerceptron
PICKLE = "data/trontagger-0.1.0.pickle"
class PerceptronTagger():
'''Greedy Averaged Perceptron tagger, as implemented by Matthew Honnibal.
See more implementation details here:
http://honnibal.wordpress.com/2013/09/11/a-good-part-of-speechpos-tagger-in-about-200-lines-of-python/
:param load: Load the pickled model upon instantiation.
'''
START = ['-START-', '-START2-']
END = ['-END-', '-END2-']
AP_MODEL_LOC = os.path.join(os.path.dirname(__file__), PICKLE)
def __init__(self, load=True):
self.model = AveragedPerceptron()
self.tagdict = {}
self.classes = set()
if load:
self.load(self.AP_MODEL_LOC)
def tag(self, corpus):
'''Tags a string `corpus`.'''
# Assume untokenized corpus has \n between sentences and ' ' between words
s_split = lambda t: t.split('\n')
w_split = lambda s: s.split()
def split_sents(corpus):
for s in s_split(corpus):
yield w_split(s)
prev, prev2 = self.START
tokens = []
for words in split_sents(corpus):
context = self.START + [self._normalize(w) for w in words] + self.END
for i, word in enumerate(words):
tag = self.tagdict.get(word)
if not tag:
features = self._get_features(i, word, context, prev, prev2)
tag = self.model.predict(features)
tokens.append((word, tag))
prev2 = prev
prev = tag
return tokens
def train(self, sentences, save_loc=None, nr_iter=5):
'''Train a model from sentences, and save it at ``save_loc``. ``nr_iter``
controls the number of Perceptron training iterations.
:param sentences: A list of (words, tags) tuples.
:param save_loc: If not ``None``, saves a pickled model in this location.
:param nr_iter: Number of training iterations.
'''
self._make_tagdict(sentences)
self.model.classes = self.classes
for iter_ in range(nr_iter):
c = 0 # 预测正确的个数
n = 0 # 总个数
for words, tags in sentences:
prev, prev2 = self.START
context = self.START + [self._normalize(w) for w in words] \
+ self.END
for i, word in enumerate(words):
guess = self.tagdict.get(word)
if not guess: # 如果word不在tagdict中进入if执行
feats = self._get_features(i, word, context, prev, prev2)
guess = self.model.predict(feats)
# 第一个参数是人工标注的,所以是正确的,第二个参数是预测值
self.model.update(tags[i], guess, feats)
prev2 = prev
prev = guess
c += guess == tags[i]
n += 1
random.shuffle(sentences) # 将序列的所有元素随机排序,shuffle()是不能直接访问的,需要导入 random 模块,然后通过 random 静态对象调用该方法
logging.info("Iter {0}: {1}/{2}={3}".format(iter_, c, n, _pc(c, n)))
self.model.average_weights()
# Pickle as a binary file
if save_loc is not None:
pickle.dump((self.model.weights, self.tagdict, self.classes),
open(save_loc, 'wb'), -1)
return None
def load(self, loc):
'''Load a pickled model.'''
try:
w_td_c = pickle.load(open(loc, 'rb'))
except IOError:
msg = ("Missing trontagger.pickle file.")
raise IOError(msg)
self.model.weights, self.tagdict, self.classes = w_td_c
self.model.classes = self.classes
return None
def _normalize(self, word):
'''Normalization used in pre-processing.
- All words are lower cased
- Digits in the range 1800-2100 are represented as !YEAR;
- Other digits are represented as !DIGITS
:rtype: str
'''
if '-' in word and word[0] != '-':
return '!HYPHEN'
elif word.isdigit() and len(word) == 4:
return '!YEAR'
elif word[0].isdigit():
return '!DIGITS'
else:
return word.lower()
def _get_features(self, i, word, context, prev, prev2):
'''Map tokens into a feature representation, implemented as a
{hashable: float} dict. If the features change, a new model must be
trained.
'''
def add(name, *args):
features[' '.join((name,) + tuple(args))] += 1
i += len(self.START)
features = defaultdict(int)
# It's useful to have a constant feature, which acts sort of like a prior
add('bias')
add('i suffix', word[-3:])
add('i pref1', word[0])
add('i-1 tag', prev)
add('i-2 tag', prev2)
add('i tag+i-2 tag', prev, prev2)
add('i word', context[i])
add('i-1 tag+i word', prev, context[i])
add('i-1 word', context[i - 1])
add('i-1 suffix', context[i - 1][-3:])
add('i-2 word', context[i - 2])
add('i+1 word', context[i + 1])
add('i+1 suffix', context[i + 1][-3:])
add('i+2 word', context[i + 2])
return features
def _make_tagdict(self, sentences): # 制作一个高频的单词-词性字典,tagdict形如{'good':'adj','man':'n'...}
'''Make a tag dictionary for single-tag words.'''
counts = defaultdict(lambda: defaultdict(int))
for words, tags in sentences: # words形如['good','man'],tags形如['adj','n']
for word, tag in zip(words, tags):
counts[word][tag] += 1
self.classes.add(tag) #将所有的词性分类标签加入到一个set中
freq_thresh = 20
ambiguity_thresh = 0.97
for word, tag_freqs in counts.items():
tag, mode = max(tag_freqs.items(), key=lambda item: item[1])
n = sum(tag_freqs.values())
# Don't add rare words to the tag dictionary
# Only add quite unambiguous words
# 设置个阈值, 只记录高频的词性
if n >= freq_thresh and (float(mode) / n) >= ambiguity_thresh:
self.tagdict[word] = tag
def _pc(n, d):
return (float(n) / d) * 100
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO)
tagger = PerceptronTagger(False)
try:
tagger.load(PICKLE)
print(tagger.tag('how are you ?'))
logging.info('Start testing...')
right = 0.0
total = 0.0
sentence = ([], [])
for line in open('data/test.txt'):
params = line.split()
if len(params) != 2: continue
sentence[0].append(params[0])
sentence[1].append(params[1])
if params[0] == '.':
text = ''
words = sentence[0]
tags = sentence[1]
for i, word in enumerate(words):
text += word
if i < len(words): text += ' '
outputs = tagger.tag(text)
assert len(tags) == len(outputs)
total += len(tags)
for o, t in zip(outputs, tags):
if o[1].strip() == t: right += 1
sentence = ([], [])
logging.info("Precision : %f", right / total)
except IOError:
logging.info('Reading corpus...')
training_data = []
sentence = ([], [])
for line in open('data/train.txt'):
params = line.split('\t')
sentence[0].append(params[0])
sentence[1].append(params[1])
if params[0] == '.':
training_data.append(sentence)
sentence = ([], [])
logging.info('training corpus size : %d', len(training_data))
logging.info('Start training...')
tagger.train(training_data, save_loc=PICKLE)