tf.Graph()
1. 它可以通过tensorboard用图形化界面展示出来流程结构
2. 它可以整合一段代码为一个整体存在于一个图中
声明情况大体有三种
1. tensor:通过张量本身直接出graph
# -*- coding: utf-8 -*-
import tensorflow as tf
c = tf.constant(4.0)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
c_out = sess.run(c)
print(c_out)
print(c.graph == tf.get_default_graph())
print(c.graph)
print(tf.get_default_graph())
输出
4.0
True
<tensorflow.python.framework.ops.Graph object at 0x7f382f9ef110>
<tensorflow.python.framework.ops.Graph object at 0x7f382f9ef110>
2.通过声明一个默认的,然后定义张量内容,在后面可以调用或保存
# -*- coding: utf-8 -*-
import tensorflow as tf
g = tf.Graph()
with g.as_default():
c = tf.constant(4.0)
sess = tf.Session(graph=g)
c_out = sess.run(c)
print(c_out)
print(g)
print(tf.get_default_graph())
输出
4.0
<tensorflow.python.framework.ops.Graph object at 0x7f65f1cb2fd0>
<tensorflow.python.framework.ops.Graph object at 0x7f65de447c90>
3.通过多个声明,在后面通过变量名来分别调用
# -*- coding: utf-8 -*-
import tensorflow as tf
g1 = tf.Graph()
with g1.as_default():
c1 = tf.constant(4.0)
g2 = tf.Graph()
with g2.as_default():
c2 = tf.constant(20.0)
with tf.Session(graph=g1) as sess1:
print(sess1.run(c1))
with tf.Session(graph=g2) as sess2:
print(sess2.run(c2))
输出
4.0
20.0
对graph的操作大体有三种
1.保存
# -*- coding: utf-8 -*-
import tensorflow as tf
g1 = tf.Graph()
with g1.as_default():
# 需要加上名称,在读取pb文件的时候,是通过name和下标来取得对应的tensor的
c1 = tf.constant(4.0, name='c1')
g2 = tf.Graph()
with g2.as_default():
c2 = tf.constant(20.0)
with tf.Session(graph=g1) as sess1:
print(sess1.run(c1))
with tf.Session(graph=g2) as sess2:
print(sess2.run(c2))
# g1的图定义,包含pb的path, pb文件名,是否是文本默认False
tf.train.write_graph(g1.as_graph_def(),'.','graph.pb',False)
输出
4.0
20.0
并且在当前文件夹下面生成graph.pb文件
2.从pb文件中调用
# -*- coding: utf-8 -*-
import tensorflow as tf
from tensorflow.python.platform import gfile
#load graph
with gfile.FastGFile("./graph.pb",'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='')
sess = tf.Session()
c1_tensor = sess.graph.get_tensor_by_name("c1:0")
c1 = sess.run(c1_tensor)
print(c1)
输出
4.0
3.穿插调用
# -*- coding: utf-8 -*-
import tensorflow as tf
g1 = tf.Graph()
with g1.as_default():
# 声明的变量有名称是一个好的习惯,方便以后使用
c1 = tf.constant(4.0, name="c1")
g2 = tf.Graph()
with g2.as_default():
c2 = tf.constant(20.0, name="c2")
with tf.Session(graph=g2) as sess1:
# 通过名称和下标来得到相应的值
c1_list = tf.import_graph_def(g1.as_graph_def(), return_elements = ["c1:0"], name = '')
print(sess1.run(c1_list[0]+c2))
输出
24.0