RNN梯度消失问题


关于梯度消失问题:

1.网络层次越深, 越容易引起梯度消失, 无论是纵向网络(bp), 还是横向网络(rnn), 梯度消失是由激活函数的导数位于[0,1]区间引起的

2.bp网络梯度消失会导致最前端的W学习不到, 而rnn梯度消失会引起记忆问题,只能学习到短期网络, 具体见https://www.jianshu.com/p/2512302f14c7

3.rnn梯度消失是因为误差间的相乘关系, lstm把这种关系改为了相加, 所以缓解了梯度消失问题

 


lstm解决梯度消失问题分析:


 


“LSTM 能解决梯度消失/梯度爆炸”是对 LSTM 的经典误解。这里我先给出几个粗线条的结论,详细的回答以后有时间了再扩展:

1、首先需要明确的是,RNN 中的梯度消失/梯度爆炸和普通的 MLP 或者深层 CNN 中梯度消失/梯度爆炸的含义不一样。MLP/CNN 中不同的层有不同的参数,各是各的梯度;而 RNN 中同样的权重在各个时间步共享,最终的梯度 g = 各个时间步的梯度 g_t 的和。

2、由 1 中所述的原因,RNN 中总的梯度是不会消失的。即便梯度越传越弱,那也只是远距离的梯度消失,由于近距离的梯度不会消失,所有梯度之和便不会消失。RNN 所谓梯度消失的真正含义是,梯度被近距离梯度主导,导致模型难以学到远距离的依赖关系。

3、LSTM 中梯度的传播有很多条路径, 这条路径上只有逐元素相乘和相加的操作,梯度流最稳定;但是其他路径(例如  )上梯度流与普通 RNN 类似,照样会发生相同的权重矩阵反复连乘。

4、LSTM 刚提出时没有遗忘门,或者说相当于  ,这时候在  直接相连的短路路径上, 可以无损地传递给  ,从而这条路径上的梯度畅通无阻,不会消失。类似于 ResNet 中的残差连接。

5、但是在其他路径上,LSTM 的梯度流和普通 RNN 没有太大区别,依然会爆炸或者消失。由于总的远距离梯度 = 各条路径的远距离梯度之和,即便其他远距离路径梯度消失了,只要保证有一条远距离路径(就是上面说的那条高速公路)梯度不消失,总的远距离梯度就不会消失(正常梯度 + 消失梯度 = 正常梯度)。因此 LSTM 通过改善一条路径上的梯度问题拯救了总体的远距离梯度

6、同样,因为总的远距离梯度 = 各条路径的远距离梯度之和,高速公路上梯度流比较稳定,但其他路径上梯度有可能爆炸,此时总的远距离梯度 = 正常梯度 + 爆炸梯度 = 爆炸梯度,因此 LSTM 仍然有可能发生梯度爆炸。不过,由于 LSTM 的其他路径非常崎岖,和普通 RNN 相比多经过了很多次激活函数(导数都小于 1),因此 LSTM 发生梯度爆炸的频率要低得多。实践中梯度爆炸一般通过梯度裁剪来解决。

7、对于现在常用的带遗忘门的 LSTM 来说,6 中的分析依然成立,而 5 分为两种情况:其一是遗忘门接近 1(例如模型初始化时会把 forget bias 设置成较大的正数,让遗忘门饱和),这时候远距离梯度不消失;其二是遗忘门接近 0,但这时模型是故意阻断梯度流的,这不是 bug 而是 feature(例如情感分析任务中有一条样本 “A,但是 B”,模型读到“但是”后选择把遗忘门设置成 0,遗忘掉内容 A,这是合理的)。当然,常常也存在 f 介于 [0, 1] 之间的情况,在这种情况下只能说 LSTM 改善(而非解决)了梯度消失的状况。

8、最后,别总是抓着梯度不放。梯度只是从反向的、优化的角度来看的,多从正面的、建模的角度想想 LSTM 有效性的原因。选择性、信息不变性都是很好的视角

posted @ 2023-02-27 14:42  車輪の唄  阅读(78)  评论(0编辑  收藏  举报  来源