Pattern Recognition and Machine Learning

1. Introduction

2. Probability Distributions

3. Linear Models for Regression

4. Linear Models for Classification

5. Neural Networks

6. Kernel Methods

7. Sparse Kernel Machines

8. Graphical Models

9. Mixture Models and EM

10. Approximate Inference

11. Sampling Methods

12. Coninuous Latent Variables

13. Sequential Data

14. Combining Models

posted @ 2011-08-29 09:55  yky  阅读(244)  评论(0编辑  收藏  举报