卡尔曼滤波C++代码
1 #include <ros/ros.h> 2 #include <string> 3 #include <stdlib.h> 4 #include <iostream> 5 #include <fstream> 6 #include <string> 7 #include <vector> 8 #include <Eigen/Dense> 9 #include <cmath> 10 #include <limits> 11 12 using namespace std; 13 using Eigen::MatrixXd; 14 15 // 16 double generateGaussianNoise(double mu, double sigma) 17 { 18 const double epsilon = std::numeric_limits<double>::min(); 19 const double two_pi = 2.0*3.14159265358979323846; 20 21 static double z0, z1; 22 static bool generate; 23 generate = !generate; 24 25 if (!generate) 26 return z1 * sigma + mu; 27 28 double u1, u2; 29 do 30 { 31 u1 = rand() * (1.0 / RAND_MAX); 32 u2 = rand() * (1.0 / RAND_MAX); 33 } while (u1 <= epsilon); 34 35 z0 = sqrt(-2.0 * log(u1)) * cos(two_pi * u2); 36 z1 = sqrt(-2.0 * log(u1)) * sin(two_pi * u2); 37 return z0 * sigma + mu; 38 } 39 40 int main(int argc, char **argv) 41 { 42 std::cout<<"test qusetion2 start !"<<std::endl; 43 ros::init(argc,argv,"question2_node"); 44 ros::NodeHandle node; 45 46 ofstream fout("/media/kuang/code_test/result.txt"); 47 48 double generateGaussianNoise(double mu, double sigma);//随机高斯分布数列生成器函数 49 50 const double delta_t = 0.1;//控制周期,100ms 51 const int num = 100;//迭代次数 52 const double acc = 10;//加速度,ft/m 53 54 MatrixXd A(2, 2); 55 A(0, 0) = 1; 56 A(1, 0) = 0; 57 A(0, 1) = delta_t; 58 A(1, 1) = 1; 59 60 MatrixXd B(2, 1); 61 B(0, 0) = pow(delta_t, 2) / 2; 62 B(1, 0) = delta_t; 63 64 MatrixXd H(1, 2);//测量的是小车的位移,速度为0 65 H(0, 0) = 1; 66 H(0, 1) = 0; 67 68 MatrixXd Q(2, 2);//过程激励噪声协方差,假设系统的噪声向量只存在速度分量上,且速度噪声的方差是一个常量0.01,位移分量上的系统噪声为0 69 Q(0, 0) = 0; 70 Q(1, 0) = 0; 71 Q(0, 1) = 0; 72 Q(1, 1) = 0.01; 73 74 MatrixXd R(1, 1);//观测噪声协方差,测量值只有位移,它的协方差矩阵大小是1*1,就是测量噪声的方差本身。 75 R(0, 0) = 10; 76 77 //time初始化,产生时间序列 78 vector<double> time(100, 0); 79 for (decltype(time.size()) i = 0; i != num; ++i) { 80 time[i] = i * delta_t; 81 //cout<<time[i]<<endl; 82 } 83 84 MatrixXd X_real(2, 1); 85 vector<MatrixXd> x_real, rand; 86 //生成高斯分布的随机数 87 for (int i = 0; i<100; ++i) { 88 MatrixXd a(1, 1); 89 a(0, 0) = generateGaussianNoise(0, sqrt(10)); 90 rand.push_back(a); 91 } 92 //生成真实的位移值 93 for (int i = 0; i < num; ++i) { 94 X_real(0, 0) = 0.5 * acc * pow(time[i], 2); 95 X_real(1, 0) = 0; 96 x_real.push_back(X_real); 97 } 98 99 //变量定义,包括状态预测值,状态估计值,测量值,预测状态与真实状态的协方差矩阵,估计状态和真实状态的协方差矩阵,初始值均为零 100 MatrixXd X_evlt = MatrixXd::Constant(2, 1, 0), X_pdct = MatrixXd::Constant(2, 1, 0), Z_meas = MatrixXd::Constant(1, 1, 0), 101 Pk = MatrixXd::Constant(2, 2, 0), Pk_p = MatrixXd::Constant(2, 2, 0), K = MatrixXd::Constant(2, 1, 0); 102 vector<MatrixXd> x_evlt, x_pdct, z_meas, pk, pk_p, k; 103 x_evlt.push_back(X_evlt); 104 x_pdct.push_back(X_pdct); 105 z_meas.push_back(Z_meas); 106 pk.push_back(Pk); 107 pk_p.push_back(Pk_p); 108 k.push_back(K); 109 110 //开始迭代 111 for (int i = 1; i < num; ++i) { 112 //预测值 113 X_pdct = A * x_evlt[i - 1] + B * acc; 114 x_pdct.push_back(X_pdct); 115 //预测状态与真实状态的协方差矩阵,Pk' 116 Pk_p = A * pk[i - 1] * A.transpose() + Q; 117 pk_p.push_back(Pk_p); 118 //K:2x1 119 MatrixXd tmp(1, 1); 120 tmp = H * pk_p[i] * H.transpose() + R; 121 K = pk_p[i] * H.transpose() * tmp.inverse(); 122 k.push_back(K); 123 //测量值z 124 Z_meas = H * x_real[i] + rand[i]; 125 z_meas.push_back(Z_meas); 126 //估计值 127 X_evlt = x_pdct[i] + k[i] * (z_meas[i] - H * x_pdct[i]); 128 x_evlt.push_back(X_evlt); 129 //估计状态和真实状态的协方差矩阵,Pk 130 Pk = (MatrixXd::Identity(2, 2) - k[i] * H) * pk_p[i]; 131 pk.push_back(Pk); 132 } 133 134 cout << "含噪声测量" << " " << "后验估计" << " " << "真值" << " " << endl; 135 for (int i = 0; i < num; ++i) { 136 cout<<z_meas[i]<<" "<<x_evlt[i](0,0)<<" "<<x_real[i](0,0)<<endl; 137 fout << z_meas[i] << " " << x_evlt[i](0, 0) << " " << x_real[i](0, 0) << endl; 138 } 139 140 fout.close(); 141 getchar(); 142 return 0; 143 }
144
下面是python画图代码:
1 #! /usr/bin/env python 2 3 import os 4 import math 5 import matplotlib.pyplot as plt 6 import numpy as np 7 8 def mean(data): 9 sum=0 10 for i in data: 11 sum = sum+i 12 return sum/len(data) 13 14 if __name__ == "__main__": 15 16 file1 = "/media/kuang/code_test/result.txt" 17 18 frame=[] 19 measure_noise = [] 20 post_eval = [] 21 groundtruth = [] 22 counter = 0 23 24 # Read all data 25 document1 = open(file1,'rw+') 26 for line1 in document1: 27 split_line1 = line1.split() 28 counter = counter + 1 29 frame.append(counter) 30 measure_noise.append(float(split_line1[0])) 31 post_eval.append(float(split_line1[1])) 32 groundtruth.append(float(split_line1[2])) 33 document1.close() 34 35 START = 0 36 END = len(frame)-1 # 1000 37 frame_sub = frame[START:END] 38 measure_noise_sub = measure_noise[START:END] 39 post_eval_sub = post_eval[START:END] 40 groundtruth_sub = groundtruth[START:END] 41 42 fig, ax1 = plt.subplots() 43 44 color = 'blue' 45 ax1.set_xlabel('Frame No.') 46 ax1.set_ylabel('measure noise', color=color) 47 ax1.set_ylim(-10,500) 48 ax1.plot(frame_sub, measure_noise_sub,'s-', color=color) 49 ax1.tick_params(axis='y', labelcolor=color) 50 51 52 ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis 53 color = 'red' 54 ax2.set_ylabel('post eval', labelpad=40,color=color) # we already handled the x-label with ax1 55 ax2.set_ylim(-10,500) 56 ax2.plot(frame_sub, post_eval_sub, 's-',color=color) 57 ax2.tick_params(axis='y',pad=30.0, labelcolor=color) 58 59 ax3 = ax1.twinx() 60 color = 'yellow' 61 ax3.set_ylabel('groundtruth', color=color, labelpad=30) 62 ax3.set_ylim(-10,500) 63 ax3.tick_params(axis='y', labelcolor=color) 64 ax3.plot(frame_sub, groundtruth_sub, 's-' , color=color) 65 66 67 fig.tight_layout() # otherwise the right y-label is slightly clipped 68 ax1.grid() 69 plt.title("Kalman Test") 70 plt.show() 71 72 # SAVE RESULT TO FILE
posted on 2019-02-15 10:26 kuangxionghui 阅读(3178) 评论(0) 编辑 收藏 举报