MySQL 索引优化与查询优化
MySQL索引优化与查询优化
索引我们都经常使用,但是你是否真正的搞懂了索引的正确使用方式呢?今天,我就带你好好看看索引的正确使用姿势以及优化。
1、数据准备
在正式开始讲解之前,我们先准备一些演示的数据,正所谓磨刀不误砍柴工嘛!
学员表 插 50万 条, 班级表 插 1万 条。
步骤1:建表
CREATE TABLE `class` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`className` VARCHAR(30) DEFAULT NULL,
`address` VARCHAR(40) DEFAULT NULL,
`monitor` INT NULL ,
PRIMARY KEY (`id`)
) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;
CREATE TABLE `student` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`stuno` INT NOT NULL ,
`name` VARCHAR(20) DEFAULT NULL,
`age` INT(3) DEFAULT NULL,
`classId` INT(11) DEFAULT NULL,
PRIMARY KEY (`id`)
#CONSTRAINT `fk_class_id` FOREIGN KEY (`classId`) REFERENCES `t_class` (`id`)
) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;
步骤2:设置参数
命令开启:允许创建函数设置:
set global log_bin_trust_function_creators=1; # 不加global只是当前窗口有效。
步骤3:创建函数
保证每条数据都不同。
#随机产生字符串
DELIMITER //
CREATE FUNCTION rand_string(n INT) RETURNS VARCHAR(255)
BEGIN
DECLARE chars_str VARCHAR(100) DEFAULT 'abcdefghijklmnopqrstuvwxyzABCDEFJHIJKLMNOPQRSTUVWXYZ';
DECLARE return_str VARCHAR(255) DEFAULT '';
DECLARE i INT DEFAULT 0;
WHILE i < n DO
SET return_str =CONCAT(return_str,SUBSTRING(chars_str,FLOOR(1+RAND()*52),1));
SET i = i + 1;
END WHILE;
RETURN return_str;
END //
DELIMITER;
#假如要删除
#drop function rand_string;
步骤4:创建存储过程
#创建往stu表中插入数据的存储过程
DELIMITER //
CREATE PROCEDURE insert_stu( START INT , max_num INT )
BEGIN
DECLARE i INT DEFAULT 0;
SET autocommit = 0; #设置手动提交事务
REPEAT #循环
SET i = i + 1; #赋值
INSERT INTO student (stuno, name ,age ,classId ) VALUES
((START+i),rand_string(6),rand_num(1,50),rand_num(1,1000));
UNTIL i = max_num
END REPEAT;
COMMIT; #提交事务
END //
DELIMITER;
#假如要删除
#drop PROCEDURE insert_stu;
创建往class表中插入数据的存储过程
#执行存储过程,往class表添加随机数据
DELIMITER //
CREATE PROCEDURE `insert_class`( max_num INT )
BEGIN
DECLARE i INT DEFAULT 0;
SET autocommit = 0;
REPEAT
SET i = i + 1;
INSERT INTO class ( classname,address,monitor ) VALUES
(rand_string(8),rand_string(10),rand_num(1,100000));
UNTIL i = max_num
END REPEAT;
COMMIT;
END //
DELIMITER ;
#假如要删除
#drop PROCEDURE insert_class;
步骤5:调用存储过程
class 表:
#执行存储过程,往class表添加1万条数据
CALL insert_class(10000);
student 表:
#执行存储过程,往stu表添加50万条数据
CALL insert_stu(100000,500000);
步骤6:删除某表上的索引
创建存储过程
DELIMITER //
CREATE PROCEDURE `proc_drop_index`(dbname VARCHAR(200),tablename VARCHAR(200))
BEGIN
DECLARE done INT DEFAULT 0;
DECLARE ct INT DEFAULT 0;
DECLARE _index VARCHAR(200) DEFAULT '';
DECLARE _cur CURSOR FOR SELECT index_name FROM
information_schema.STATISTICS WHERE table_schema=dbname AND table_name=tablename AND
seq_in_index=1 AND index_name <>'PRIMARY' ;
#每个游标必须使用不同的declare continue handler for not found set done=1来控制游标的结束
DECLARE CONTINUE HANDLER FOR NOT FOUND set done=2 ;
#若没有数据返回,程序继续,并将变量done设为2
OPEN _cur;
FETCH _cur INTO _index;
WHILE _index<>'' DO
SET @str = CONCAT("drop index " , _index , " on " , tablename );
PREPARE sql_str FROM @str ;
EXECUTE sql_str;
DEALLOCATE PREPARE sql_str;
SET _index='';
FETCH _cur INTO _index;
END WHILE;
CLOSE _cur;
END //
DELIMITER ;
执行存储过程
CALL proc_drop_index("dbname","tablename");
2、索引失效案例
1、全值匹配我最爱
全值匹配会使用到索引,而且对于联合索引来说,就算顺序不对也会使用索引,优化器会优化。
2、最佳左前缀法则
索引文件具有 B-Tree 的最左前缀匹配特性,如果左边的值未确定,那么无法使用此索引。
3、主键插入顺序
初始数据:
如果此时再插入一条主键值为 9 的记录,那它插入的位置就如下图
可这个数据页已经满了,再插进来咋办呢?我们需要把当前 页面分裂 成两个页面,把本页中的一些记录移动到新创建的这个页中。页面分裂和记录移位意味着什么?意味着: 性能损耗 !所以如果我们想尽量避免这样无谓的性能损耗,最好让插入的记录的 主键值依次递增 ,这样就不会发生这样的性能损耗了。所以我们建议:让主键具有 AUTO_INCREMENT ,让存储引擎自己为表生成主键,而不是我们手动插入 ,比如: person_info 表
CREATE TABLE person_info(
id INT UNSIGNED NOT NULL AUTO_INCREMENT,
name VARCHAR(100) NOT NULL,
birthday DATE NOT NULL,
phone_number CHAR(11) NOT NULL,
country varchar(100) NOT NULL,
PRIMARY KEY (id),
KEY idx_name_birthday_phone_number (name(10), birthday, phone_number)
);
我们自定义的主键列 id 拥有 AUTO_INCREMENT 属性,在插入记录时存储引擎会自动为我们填入自增的主键值。这样的主键占用空间小,顺序写入,减少页分裂。
4、计算、函数、类型转换(自动或手动)导致索引失效
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.name LIKE 'abc%';
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE LEFT(student.name,3) = 'abc';
创建索引
CREATE INDEX idx_name ON student(NAME);
第一种:索引优化生效
mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.name LIKE 'abc%';
mysql> SELECT SQL_NO_CACHE * FROM student WHERE student.name LIKE 'abc%';
+---------+---------+--------+------+---------+
| id | stuno | name | age | classId |
+---------+---------+--------+------+---------+
| 5301379 | 1233401 | AbCHEa | 164 | 259 |
| 7170042 | 3102064 | ABcHeB | 199 | 161 |
| 1901614 | 1833636 | ABcHeC | 226 | 275 |
| 5195021 | 1127043 | abchEC | 486 | 72 |
| 4047089 | 3810031 | AbCHFd | 268 | 210 |
| 4917074 | 849096 | ABcHfD | 264 | 442 |
| 1540859 | 141979 | abchFF | 119 | 140 |
| 5121801 | 1053823 | AbCHFg | 412 | 327 |
| 2441254 | 2373276 | abchFJ | 170 | 362 |
| 7039146 | 2971168 | ABcHgI | 502 | 465 |
| 1636826 | 1580286 | ABcHgK | 71 | 262 |
| 374344 | 474345 | abchHL | 367 | 212 |
| 1596534 | 169191 | AbCHHl | 102 | 146 |
...
| 5266837 | 1198859 | abclXe | 292 | 298 |
| 8126968 | 4058990 | aBClxE | 316 | 150 |
| 4298305 | 399962 | AbCLXF | 72 | 423 |
| 5813628 | 1745650 | aBClxF | 356 | 323 |
| 6980448 | 2912470 | AbCLXF | 107 | 78 |
| 7881979 | 3814001 | AbCLXF | 89 | 497 |
| 4955576 | 887598 | ABcLxg | 121 | 385 |
| 3653460 | 3585482 | AbCLXJ | 130 | 174 |
| 1231990 | 1283439 | AbCLYH | 189 | 429 |
| 6110615 | 2042637 | ABcLyh | 157 | 40 |
+---------+---------+--------+------+---------+
401 rows in set, 1 warning (0.01 sec)
第二种:索引优化失效
mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE LEFT(student.name,3) = 'abc';
mysql> SELECT SQL_NO_CACHE * FROM student WHERE LEFT(student.name,3) = 'abc';
+---------+---------+--------+------+---------+
| id | stuno | name | age | classId |
+---------+---------+--------+------+---------+
| 5301379 | 1233401 | AbCHEa | 164 | 259 |
| 7170042 | 3102064 | ABcHeB | 199 | 161 |
| 1901614 | 1833636 | ABcHeC | 226 | 275 |
| 5195021 | 1127043 | abchEC | 486 | 72 |
| 4047089 | 3810031 | AbCHFd | 268 | 210 |
| 4917074 | 849096 | ABcHfD | 264 | 442 |
| 1540859 | 141979 | abchFF | 119 | 140 |
| 5121801 | 1053823 | AbCHFg | 412 | 327 |
| 2441254 | 2373276 | abchFJ | 170 | 362 |
| 7039146 | 2971168 | ABcHgI | 502 | 465 |
| 1636826 | 1580286 | ABcHgK | 71 | 262 |
| 374344 | 474345 | abchHL | 367 | 212 |
| 1596534 | 169191 | AbCHHl | 102 | 146 |
...
| 5266837 | 1198859 | abclXe | 292 | 298 |
| 8126968 | 4058990 | aBClxE | 316 | 150 |
| 4298305 | 399962 | AbCLXF | 72 | 423 |
| 5813628 | 1745650 | aBClxF | 356 | 323 |
| 6980448 | 2912470 | AbCLXF | 107 | 78 |
| 7881979 | 3814001 | AbCLXF | 89 | 497 |
| 4955576 | 887598 | ABcLxg | 121 | 385 |
| 3653460 | 3585482 | AbCLXJ | 130 | 174 |
| 1231990 | 1283439 | AbCLYH | 189 | 429 |
| 6110615 | 2042637 | ABcLyh | 157 | 40 |
+---------+---------+--------+------+---------+
401 rows in set, 1 warning (3.62 sec)
type为“ALL”,表示没有使用到索引,查询时间为 3.62 秒,查询效率较之前低很多。
5、类型转换导致索引失效
下列哪个sql语句可以用到索引。(假设name字段上设置有索引)
# 未使用到索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE name=123;
# 使用到索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE name='123';
name=123发生类型转换,索引失效。
6、范围条件右边的列索引失效
ALTER TABLE student DROP INDEX idx_name;
ALTER TABLE student DROP INDEX idx_age;
ALTER TABLE student DROP INDEX idx_age_classid;
EXPLAIN SELECT SQL_NO_CACHE * FROM student
WHERE student.age=30 AND student.classId>20 AND student.name = 'abc' ;
create index idx_age_name_classid on student(age,name,classid);
将范围查询条件放置语句最后:
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age=30 AND student.name = 'abc' AND student.classId>20 ;
7、不等于(!= 或者<>)索引失效
8、is null可以使用索引,is not null无法使用索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age IS NULL;
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age IS NOT NULL;
9、like以通配符%开头索引失效
页面搜索严禁左模糊或者全模糊,如果需要请走搜索引擎来解决。
10、OR 前后存在非索引的列,索引失效
# 未使用到索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 10 OR classid = 100;
#使用到索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age = 10 OR name = 'Abel';
11、数据库和表的字符集统一使用utf8mb4
统一使用utf8mb4( 5.5.3版本以上支持)兼容性更好,统一字符集可以避免由于字符集转换产生的乱码。不同的 字符集 进行比较前需要进行 转换 会造成索引失效。
3、关联查询优化
1、采用左外连接
下面开始 EXPLAIN 分析
EXPLAIN SELECT SQL_NO_CACHE * FROM type LEFT JOIN book ON type.card = book.card;
结论:type 有All,即没有使用索引。
添加索引优化
ALTER TABLE book ADD INDEX Y ( card); #【被驱动表】,可以避免全表扫描
EXPLAIN SELECT SQL_NO_CACHE * FROM type LEFT JOIN book ON type.card = book.card;
可以看到第二行的 type 变为了 ref,rows 也变成了优化比较明显。这是由左连接特性决定的。LEFT JOIN 条件用于确定如何从右表搜索行,左边一定都有,所以 右边是我们的关键点,一定需要建立索引。
ALTER TABLE `type` ADD INDEX X (card); #【驱动表】,无法避免全表扫描
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;
接着:
DROP INDEX Y ON book;
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;
2、采用内连接
drop index X on type;
drop index Y on book;(如果已经删除了可以不用再执行该操作)
换成 inner join(MySQL自动选择驱动表)
EXPLAIN SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;
添加索引优化
ALTER TABLE book ADD INDEX Y ( card);
EXPLAIN SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;
ALTER TABLE type ADD INDEX X (card);
EXPLAIN SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;
接着:
DROP INDEX X ON `type`;
EXPLAIN SELECT SQL_NO_CACHE * FROM TYPE INNER JOIN book ON type.card=book.card;
接着:
ALTER TABLE `type` ADD INDEX X (card);
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` INNER JOIN book ON type.card=book.card;
3、join语句原理
我们来看一下这个语句:
EXPLAIN SELECT * FROM t1 STRAIGHT_JOIN t2 ON (t1.a=t2.a);
如果直接使用join语句,MySQL优化器可能会选择表t1或t2作为驱动表,这样会影响我们分析SQL语句的执行过程。所以,为了便于分析执行过程中的性能问题,我改用 straight_join 让MySQL使用固定的连接方式执行查询,这样优化器只会按照我们指定的方式去join。在这个语句里,t1 是驱动表,t2是被驱动表。
可以看到,在这条语句里,被驱动表t2的字段a上有索引,join过程用上了这个索引,因此这个语句的执
行流程是这样的:
- 从表t1中读入一行数据 R;
- 从数据行R中,取出a字段到表t2里去查找;
- 取出表t2中满足条件的行,跟R组成一行,作为结果集的一部分;
- 重复执行步骤1到3,直到表t1的末尾循环结束。
这个过程是先遍历表t1,然后根据从表t1中取出的每行数据中的a值,去表t2中查找满足条件的记录。在形式上,这个过程就跟我们写程序时的嵌套查询类似,并且可以用上被驱动表的索引,所以我们称之为“Index Nested-Loop Join”,简称NLJ。它对应的流程图如下所示:
在这个流程里:
- 对驱动表t1做了全表扫描,这个过程需要扫描100行;
- 而对于每一行R,根据a字段去表t2查找,走的是树搜索过程。由于我们构造的数据都是一一对应的,因此每次的搜索过程都只扫描一行,也是总共扫描100行;
- 所以,整个执行流程,总扫描行数是200。
小结:
- 保证被驱动表的JOIN字段已经创建了索引
- 需要JOIN 的字段,数据类型保持绝对一致
- LEFT JOIN 时,选择小表作为驱动表, 大表作为被驱动表,减少外层循环的次数
- INNER JOIN 时,MySQL会自动将小结果集的表选为驱动表,选择相信MySQL优化策略
- 能够直接多表关联的尽量直接关联,不用子查询。(减少查询的趟数)
- 不建议使用子查询,建议将子查询SQL拆开结合程序多次查询,或使用 JOIN 来代替子查询
- 衍生表建不了索引
4、子查询优化
MySQL从4.1版本开始支持子查询,使用子查询可以进行SELECT语句的嵌套查询,即一个SELECT查询的结果作为另一个SELECT语句的条件。 子查询可以一次性完成很多逻辑上需要多个步骤才能完成的SQL操作 。
子查询是 MySQL 的一项重要的功能,可以帮助我们通过一个 SQL 语句实现比较复杂的查询。但是,子查询的执行效率不高。原因:
- 执行子查询时,MySQL需要为内层查询语句的查询结果建立一个临时表 ,然后外层查询语句从临时表中查询记录。查询完毕后,再撤销这些临时表 。这样会消耗过多的CPU和IO资源,产生大量的慢查询。
- 子查询的结果集存储的临时表,不论是内存临时表还是磁盘临时表都不会存在索引 ,所以查询性能会受到一定的影响。
- 对于返回结果集比较大的子查询,其对查询性能的影响也就越大。
在MySQL中,可以使用连接(JOIN)查询来替代子查询。连接查询不需要建立临时表 ,其速度比子查询要快 ,如果查询中使用索引的话,性能就会更好。
结论:尽量不要使用NOT IN 或者 NOT EXISTS,用LEFT JOIN xxx ON xx WHERE xx IS NULL替代
5、排序优化
1、排序优化
问题:在 WHERE 条件字段上加索引,但是为什么在 ORDER BY 字段上还要加索引呢?
优化建议:
- SQL 中,可以在 WHERE 子句和 ORDER BY 子句中使用索引,目的是在 WHERE 子句中避免全表扫描 ,在 ORDER BY 子句避免使用 FileSort 排序 。当然,某些情况下全表扫描,或者 FileSort 排序不一定比索引慢。但总的来说,我们还是要避免,以提高查询效率。
- 尽量使用 Index 完成 ORDER BY 排序。如果 WHERE 和 ORDER BY 后面是相同的列就使用单索引列;如果不同就使用联合索引。
- 无法使用 Index 时,需要对 FileSort 方式进行调优。
INDEX a_b_c(a,b,c)
order by 能使用索引最左前缀
- ORDER BY a
- ORDER BY a,b
- ORDER BY a,b,c
- ORDER BY a DESC,b DESC,c DESC
如果WHERE使用索引的最左前缀定义为常量,则order by 能使用索引
- WHERE a = const ORDER BY b,c
- WHERE a = const AND b = const ORDER BY c
- WHERE a = const ORDER BY b,c
- WHERE a = const AND b > const ORDER BY b,c
不能使用索引进行排序
- ORDER BY a ASC,b DESC,c DESC /* 排序不一致 */
- WHERE g = const ORDER BY b,c /*丢失a索引*/
- WHERE a = const ORDER BY c /*丢失b索引*/
- WHERE a = const ORDER BY a,d /*d不是索引的一部分*/
- WHERE a in (...) ORDER BY b,c /*对于排序来说,多个相等条件也是范围查询*/
6、GROUP BY优化
- group by 使用索引的原则几乎跟order by一致 ,group by 即使没有过滤条件用到索引,也可以直接
使用索引。 - group by 先排序再分组,遵照索引建的最佳左前缀法则
- 当无法使用索引列,增大 max_length_for_sort_data 和 sort_buffer_size 参数的设置
- where效率高于having,能写在where限定的条件就不要写在having中了
- 减少使用order by,和业务沟通能不排序就不排序,或将排序放到程序端去做。Order by、group by、distinct这些语句较为耗费CPU,数据库的CPU资源是极其宝贵的。
- 包含了order by、group by、distinct这些查询的语句,where条件过滤出来的结果集请保持在1000行
以内,否则SQL会很慢。
7、优化分页查询
优化思路一
在索引上完成排序分页操作,最后根据主键关联回原表查询所需要的其他列内容。
EXPLAIN SELECT * FROM student t,(SELECT id FROM student ORDER BY id LIMIT 2000000,10)
a W
HERE t.id = a.id;
优化思路二
该方案适用于主键自增的表,可以把Limit 查询转换成某个位置的查询 。
EXPLAIN SELECT * FROM student WHERE id > 2000000 LIMIT 10;
8、优先考虑覆盖索引
1、什么是覆盖索引?
理解方式一:索引是高效找到行的一个方法,但是一般数据库也能使用索引找到一个列的数据,因此它不必读取整个行。毕竟索引叶子节点存储了它们索引的数据;当能通过读取索引就可以得到想要的数据,那就不需要读取行了。一个索引包含了满足查询结果的数据就叫做覆盖索引。
理解方式二:非聚簇复合索引的一种形式,它包括在查询里的SELECT、JOIN和WHERE子句用到的所有列(即建索引的字段正好是覆盖查询条件中所涉及的字段)。
简单说就是, 索引列+主键 包含 SELECT 到 FROM之间查询的列 。
2、覆盖索引的利弊
好处:
- 避免Innodb表进行索引的二次查询(回表)
- 可以把随机IO变成顺序IO加快查询效率
弊端:索引字段的维护 总是有代价的。因此,在建立冗余索引来支持覆盖索引时就需要权衡考虑了。这是业务
DBA,或者称为业务数据架构师的工作 。
9、如何给字符串添加索引
有一张教师表,表定义如下:
create table teacher(
ID bigint unsigned primary key,
email varchar(64),
...
)engine=innodb;
讲师要使用邮箱登录,所以业务代码中一定会出现类似于这样的语句:
mysql> select col1, col2 from teacher where email='xxx';
如果email这个字段上没有索引,那么这个语句就只能做全表扫描 。
1、前缀索引
MySQL是支持前缀索引的。默认地,如果你创建索引的语句不指定前缀长度,那么索引就会包含整个字
符串。
mysql> alter table teacher add index index1(email);
#或
mysql> alter table teacher add index index2(email(6));
这两种不同的定义在数据结构和存储上有什么区别呢?下图就是这两个索引的示意图 :
以及
如果使用的是index1(即email整个字符串的索引结构),执行顺序是这样的:
- 从index1索引树找到满足索引值是’ zhangssxyz@xxx.com ’的这条记录,取得ID2的值;
- 到主键上查到主键值是ID2的行,判断email的值是正确的,将这行记录加入结果集;
- 取index1索引树上刚刚查到的位置的下一条记录,发现已经不满足email=' zhangssxyz@xxx.com ’的
条件了,循环结束。
这个过程中,只需要回主键索引取一次数据,所以系统认为只扫描了一行。
如果使用的是index2(即email(6)索引结构),执行顺序是这样的:
- 从index2索引树找到满足索引值是’zhangs’的记录,找到的第一个是ID1;
- 到主键上查到主键值是ID1的行,判断出email的值不是’ zhangssxyz@xxx.com ’,这行记录丢弃;
- 取index2上刚刚查到的位置的下一条记录,发现仍然是’zhangs’,取出ID2,再到ID索引上取整行然
后判断,这次值对了,将这行记录加入结果集; - 重复上一步,直到在idxe2上取到的值不是’zhangs’时,循环结束。
也就是说使用前缀索引,定义好长度,就可以做到既节省空间,又不用额外增加太多的查询成本。前面已经讲过区分度,区分度越高越好。因为区分度越高,意味着重复的键值越少。
2、前缀索引对覆盖索引的影响
使用前缀索引就用不上覆盖索引对查询性能的优化了,这也是你在选择是否使用前缀索引时需要考虑的一个因素。
10、索引下推
Index Condition Pushdown(ICP)是MySQL 5.6中新特性,是一种在存储引擎层使用索引过滤数据的一种优化方式。ICP可以减少存储引擎访问基表的次数以及MySQL服务器访问存储引擎的次数。
1、使用前后的扫描过程
在不使用ICP索引扫描的过程:
storage层:只将满足index key条件的索引记录对应的整行记录取出,返回给server层
server 层:对返回的数据,使用后面的where条件过滤,直至返回最后一行
使用ICP扫描的过程:
storage层:
首先将index key条件满足的索引记录区间确定,然后在索引上使用index filter进行过滤。将满足的index
filter条件的索引记录才去回表取出整行记录返回server层。不满足index filter条件的索引记录丢弃,不回
表、也不会返回server层。
server 层:
对返回的数据,使用table filter条件做最后的过滤
使用前后的成本差别
使用前,存储层多返回了需要被index filter过滤掉的整行记录
使用ICP后,直接就去掉了不满足index filter条件的记录,省去了他们回表和传递到server层的成本。
ICP的 加速效果 取决于在存储引擎内通过 ICP筛选 掉的数据的比例。
2、ICP的使用条件
ICP的使用条件:
- 只能用于二级索引(secondary index)
- explain显示的执行计划中type值(join 类型)为 range 、 ref 、 eq_ref 或者 ref_or_null
- 并非全部where条件都可以用ICP筛选,如果where条件的字段不在索引列中,还是要读取整表的记录
到server端做where过滤 - ICP可以用于MyISAM和InnnoDB存储引擎
- MySQL 5.6版本的不支持分区表的ICP功能,5.7版本的开始支持
- 当SQL使用覆盖索引时,不支持ICP优化方法
3、ICP使用案例
SELECT * FROM tuser
WHERE NAME LIKE '张%'
AND age = 10
AND ismale = 1;
11、普通索引 vs 唯一索引
从性能的角度考虑,你选择唯一索引还是普通索引呢?选择的依据是什么呢?
假设,我们有一个主键列为ID的表,表中有字段k,并且在k上有索引,假设字段 k 上的值都不重复。这个表的建表语句是:
mysql> create table test(
id int primary key,
k int not null,
name varchar(16),
index (k)
)engine=InnoDB;
表中R1~R5的(ID,k)值分别为(100,1)、(200,2)、(300,3)、(500,5)和(600,6)。
1、查询过程
假设,执行查询的语句是 select id from test where k=5。
- 对于普通索引来说,查找到满足条件的第一个记录(5,500)后,需要查找下一个记录,直到碰到第一个不满足k=5条件的记录。
- 对于唯一索引来说,由于索引定义了唯一性,查找到第一个满足条件的记录后,就会停止继续检索。
那么,这个不同带来的性能差距会有多少呢?答案是, 微乎其微。
2、更新过程
为了说明普通索引和唯一索引对更新语句性能的影响这个问题,介绍一下change buffer。
当需要更新一个数据页时,如果数据页在内存中就直接更新,而如果这个数据页还没有在内存中的话,在不影响数据一致性的前提下, InooDB会将这些更新操作缓存在change buffer中 ,这样就不需要从磁盘中读入这个数据页了。在下次查询需要访问这个数据页的时候,将数据页读入内存,然后执行change buffer中与这个页有关的作。通过这种方式就能保证这个数据逻辑的正确性。
将change buffer中的操作应用到原数据页,得到最新结果的过程称为 merge 。除了 访问这个数据页 会触发merge外,系统有 后台线程会定期 merge。在 数据库正常关闭(shutdown) 的过程中,也会执行merge 操作。
如果能够将更新操作先记录在change buffer, 减少读磁盘 ,语句的执行速度会得到明显的提升。而且,数据读入内存是需要占用 buffer pool 的,所以这种方式还能够 避免占用内存 ,提高内存利用率。
唯一索引的更新就不能使用change buffer ,实际上也只有普通索引可以使用。如果要在这张表中插入一个新记录(4,400)的话,InnoDB的处理流程是怎样的?
3、change buffer的使用场景
1、普通索引和唯一索引应该怎么选择?其实,这两类索引在查询能力上是没差别的,主要考虑的是对 更新性能 的影响。所以,建议你 尽量选择普通索引 。
2、在实际使用中会发现, 普通索引 和 change buffer 的配合使用,对于 数据量大 的表的更新优化还是很明显的。
3、如果所有的更新后面,都马上 伴随着对这个记录的查询 ,那么你应该 关闭change buffer 。而在其他情况下,change buffer都能提升更新性能。
4、由于唯一索引用不上change buffer的优化机制,因此如果 业务可以接受 ,从性能角度出发建议优先考虑非唯一索引。但是如果"业务可能无法确保"的情况下,怎么处理呢?
- 首先, 业务正确性优先 。我们的前提是“业务代码已经保证不会写入重复数据”的情况下,讨论性能问题。如果业务不能保证,或者业务就是要求数据库来做约束,那么没得选,必须创建唯一索引。这种情况下,本节的意义在于,如果碰上了大量插入数据慢、内存命中率低的时候,给你多提供一个排查思路。
- 然后,在一些“ 归档库 ”的场景,你是可以考虑使用唯一索引的。比如,线上数据只需要保留半年,然后历史数据保存在归档库。这时候,归档数据已经是确保没有唯一键冲突了。要提高归档效率,可以考虑把表里面的唯一索引改成普通索引。
12、其它查询优化策略
1、COUNT(*)与COUNT(具体字段)效率
问:在 MySQL 中统计数据表的行数,可以使用三种方式: SELECT COUNT(*) 、 SELECT COUNT(1) 和SELECT COUNT(具体字段) ,使用这三者之间的查询效率是怎样的?
2、关于SELECT(*)
在表查询中,建议明确字段,不要使用 * 作为查询的字段列表,推荐使用SELECT <字段列表> 查询。原因:
① MySQL 在解析的过程中,会通过 查询数据字典 将"*"按序转换成所有列名,这会大大的耗费资源和时间。
② 无法使用 覆盖索引
3、LIMIT 1 对优化的影响
针对的是会扫描全表的 SQL 语句,如果你可以确定结果集只有一条,那么加上 LIMIT 1 的时候,当找到一条结果的时候就不会继续扫描了,这样会加快查询速度。
如果数据表已经对字段建立了唯一索引,那么可以通过索引进行查询,不会全表扫描的话,就不需要加上 LIMIT 1 了。
4、多使用COMMIT
只要有可能,在程序中尽量多使用 COMMIT,这样程序的性能得到提高,需求也会因为 COMMIT 所释放的资源而减少。
COMMIT 所释放的资源:
- 回滚段上用于恢复数据的信息
- 被程序语句获得的锁
- redo / undo log buffer 中的空间
- 管理上述 3 种资源中的内部花费
13、自增主键的问题
1、自增ID的问题
自增ID做主键,简单易懂,几乎所有数据库都支持自增类型,只是实现上各自有所不同而已。自增ID除了简单,其他都是缺点,总体来看存在以下几方面的问题:
- 可靠性不高
存在自增ID回溯的问题,这个问题直到最新版本的MySQL 8.0才修复。 - 安全性不高
对外暴露的接口可以非常容易猜测对应的信息。比如:/User/1/这样的接口,可以非常容易猜测用户ID的值为多少,总用户数量有多少,也可以非常容易地通过接口进行数据的爬取。 - 性能差
自增ID的性能较差,需要在数据库服务器端生成。 - 交互多
业务还需要额外执行一次类似 last_insert_id() 的函数才能知道刚才插入的自增值,这需要多一次的网络交互。在海量并发的系统中,多1条SQL,就多一次性能上的开销。 - 局部唯一性
最重要的一点,自增ID是局部唯一,只在当前数据库实例中唯一,而不是全局唯一,在任意服务器间都是唯一的。对于目前分布式系统来说,这简直就是噩梦
2、推荐的主键设计
非核心业务 :对应表的主键自增ID,如告警、日志、监控等信息。
核心业务 :主键设计至少应该是全局唯一且是单调递增。全局唯一保证在各系统之间都是唯一的,单调递增是希望插入时不影响数据库性能。
这里推荐最简单的一种主键设计:UUID。
UUID的特点:全局唯一,占用36字节,数据无序,插入性能差。
认识UUID:
- 为什么UUID是全局唯一的?
- 为什么UUID占用36个字节?
- 为什么UUID是无序的?
MySQL数据库的UUID组成如下所示:
UUID = 时间+UUID版本(16字节)- 时钟序列(4字节) - MAC地址(12字节)
我们以UUID值e0ea12d4-6473-11eb-943c-00155dbaa39d举例:
为什么UUID是全局唯一的?
- 在UUID中时间部分占用60位,存储的类似TIMESTAMP的时间戳,但表示的是从1582-10-15 00:00:00.00到现在的100ns的计数。可以看到UUID存储的时间精度比TIMESTAMPE更高,时间维度发生重复的概率降低到1/100ns。
时钟序列是为了避免时钟被回拨导致产生时间重复的可能性。MAC地址用于全局唯一。
为什么UUID占用36个字节?
- UUID根据字符串进行存储,设计时还带有无用"-"字符串,因此总共需要36个字节。
为什么UUID是随机无序的呢?
- 因为UUID的设计中,将时间低位放在最前面,而这部分的数据是一直在变化的,并且是无序。
改造UUID
若将时间高低位互换,则时间就是单调递增的了,也就变得单调递增了。MySQL 8.0可以更换时间低位和时间高位的存储方式,这样UUID就是有序的UUID了。
MySQL 8.0还解决了UUID存在的空间占用的问题,除去了UUID字符串中无意义的"-"字符串,并且将字符串用二进制类型保存,这样存储空间降低为了16字节。
可以通过MySQL8.0提供的uuid_to_bin函数实现上述功能,同样的,MySQL也提供了bin_to_uuid函数进行
转化:
SET @uuid = UUID();
SELECT @uuid,uuid_to_bin(@uuid),uuid_to_bin(@uuid,TRUE);
通过函数uuid_to_bin(@uuid,true)将UUID转化为有序UUID了。全局唯一 + 单调递增,这不就是我们想要的主键!
好啦,到这里我们的MySQL索引优化就讲解完拉!