主从库如何实现数据一致
前置知识
我们知道 Redis 有 AOF 和 RDB 两种持久化机制,如果 Redis 发生宕机,可以通过这两种机制恢复数据,从而保证尽量少丢失数据,提升可靠性。
不过使用了这两种机制依然存在服务不可用的问题,比如我们实际只运行了一个 Redis 实例,如果这个实例宕机了,他在恢复期间,是无法服务新来的数据存储请求的。
那我们总说的 Redis 具有高可用性是怎么回事呢?其实这包括两个方面:1、数据尽量少丢失,2、服务尽量少中断。AOF 和 RDB 保重了第一点,而对于第二点,Redis 的做法就是增加副本容量,将一份数据同时保存在多个实例上,即时有一个实例出现了故障,需要过一段时间才能恢复,其他实例也可以对外提供服务,不会影响业务使用。
多实例保存同一份数据,我们必须要解决一个问题,就是这多个副本之间的数据如何保持一致呢?数据读写操作可以发给所有的实例吗?实际上,Redis 提供了主从模式,以保证数据的一致,主从库之间采用的是读写分离的方式。
- 读操作:主库、从库都可以接收。
- 写操作:首先到主库执行,然后,主库将写操作同步给从库。
那么,为什么要采用读写分离的方式呢?
如果在上图中,不管是主库还是从库,都能接收客户端的写操作,那么,一个直接的问题就是:如果客户端对同一个数据(例如 k1)前后修改了三次,每一次的修改请求都发送到不同的实例上,在不同的实例上执行,那么,这个数据在这三个实例上的副本就不一致了(分别是 v1、v2 和 v3)。在读取这个数据的时候,就可能读取到旧的值。
如果我们非要保持这个数据在三个实例上一致,就要涉及到加锁、实例间协商是否完成修改等一系列操作,但这会带来巨额的开销,这对于 Redis 来说肯定是不能接受的。
而主从库模式一旦采用了读写分离,所有数据的修改只会在主库上进行,不用协调三个实例。主库有了最新的数据后,会同步给从库,这样,主从库的数据就是一致的。
那么,主从库同步是如何完成的呢?主库数据是一次性传给从库,还是分批同步?要是主从库间的网络断连了,数据还能保持一致吗?下面我就带你一探究竟。
主从库间如何进行第一次同步
当我们启动多个 Redis 实例的时候,它们相互之间就可以通过 replicaof(Redis 5.0 之前使用 slaveof)命令形成主库和从库的关系,之后会按照三个阶段完成数据的第一次同步。
例如,现在有实例 1(ip:172.16.19.3)和实例 2(ip:172.16.19.5),我们在实例 2 上执行以下这个命令后,实例 2 就变成了实例 1 的从库,并从实例 1 上复制数据:
replicaof 172.16.19.3 6379
接下来就是主从库同步的三个阶段了,整体步骤如下图:
第一阶段是主从库间建立连接、协商同步的过程,主要是为全量复制做准备。在这一步,从库和主库建立起连接,并告诉主库即将进行同步,主库确认回复后,主从库间就可以开始同步了。
具体来说,从库给主库发送 psync 命令,表示要进行数据同步,主库根据这个命令的参数来启动复制。psync 命令包含了主库的 runID 和复制进度 offset 两个参数。
runID,是每个 Redis 实例启动时都会自动生成的一个随机 ID,用来唯一标记这个实例。当从库和主库第一次复制时,因为不知道主库的 runID,所以将 runID 设为“?”
offset,此时设为 -1,表示第一次复制。
主库收到 psync 命令后,会用 FULLRESYNC 响应命令带上两个参数:主库 runID 和主库目前的复制进度 offset,返回给从库。从库收到响应后,会记录下这两个参数。
FULLRESYNC 响应表示第一次复制采用的全量复制,也就是说,主库会把当前所有的数据都复制给从库。
第二阶段,主库将所有数据同步给从库。从库收到数据后,在本地完成数据加载。这个过程依赖于内存快照生成的 RDB 文件。
具体来说,主库执行 bgsave 命令,生成 RDB 文件,接着将文件发给从库。从库接收到RDB 文件后,会先清空当前数据库,然后加载 RDB 文件。这是因为从库在通过 replicaof命令开始和主库同步前,可能保存了其他数据。为了避免之前数据的影响,从库需要先把当前数据库清空。
在主库将数据同步给从库的过程中,主库不会被阻塞,仍然可以正常接收请求。否则,Redis 的服务就被中断了。但是,这些请求中的写操作并没有记录到刚刚生成的 RDB 文件中。为了保证主从库的数据一致性,主库会在内存中用专门的 replication buffer,记录RDB 文件生成后收到的所有写操作。
第三个阶段,主库会把第二阶段执行过程中新收到的写命令,再发送给从库。
具体的操作是,当主库完成 RDB 文件发送后,就会把此时 replication buffer 中的修改操作发给从库,从库再重新执行这些操作。这样一来,主从库就实现同步了。
主从级联模式分担全量复制时的主库压力
经过上面主从库间的第一次数据同步操作,我们知道一次全量复制对于主库来说需要两个耗时操作:生成 RDB 文件和传输 RDB 文件。
如果从库数量很多,而且都要和主库进行全量复制的话,就会导致主库忙于 fork 子进程生成 RDB 文件,进行数据全量同步。fork 这个操作会阻塞主线程处理正常请求,从而导致主库响应应用程序的请求速度变慢。此外,传输 RDB 文件也会占用主库的网络带宽,同样会给主库的资源使用带来压力。那么,有没有好的解决方法可以分担主库压力呢?
我们可以使用“主 - 从 - 从”模式 来解决主库压力过大的问题,通过“主 - 从 - 从”模式将主库生成 RDB 和传输 RDB 的压力,以级联的方式分散到从库上。
简单来说,我们在部署主从集群的时候,可以手动选择一个从库(比如选择内存资源配置较高的从库),用于级联其他的从库。然后,我们可以再选择一些从库(例如三分之一的从库),在这些从库上执行如下命令,让它们和刚才所选的从库,建立起主从关系。
replicaof 所选从库的IP 6379
这样一来,这些从库就会知道,在进行同步时,不用再和主库进行交互了,只要和级联的从库进行写操作同步就行了,这就可以减轻主库上的压力,如下图所示:
一旦主从库完成了全量复制,它们之间就会一直维护一个网络连接,主库会通过这个连接将后续陆续收到的命令操作再同步给从库,这个过程也称为基于长连接的命令传播,可以避免频繁建立连接的开销。
但是这个过程中存在着风险点,最常见的就是网络断连或阻塞。如果网络断连,主从库之间就无法进行命令传播了,从库的数据自然也就没办法和主库保持一致了,客户端就可能从从库读到旧数据。下面我们就来看看主从库间网络断了怎么办?
主从库间网络断了怎么办?
在 Redis 2.8 之前,如果主从库在命令传播时出现了网络闪断,那么,从库就会和主库重新进行一次全量复制,开销非常大。从 Redis 2.8 开始,网络断了之后,主从库会采用增量复制的方式继续同步。
全量复制是同步所有数据,而增量复制只会把主从库网络断连期间主库收到的命令,同步给从库。
那么,增量复制时,主从库之间具体是怎么保持同步的呢?这里的奥妙就在于repl_backlog_buffer 这个缓冲区。我们先来看下它是如何用于增量命令的同步的。
当主从库断连后,主库会把断连期间收到的写操作命令,写入 replication buffer,同时也会把这些操作命令也写入 repl_backlog_buffer 这个缓冲区。repl_backlog_buffer 是一个环形缓冲区,主库会记录自己写到的位置,从库则会记录自己已经读到的位置。
刚开始的时候,主库和从库的写读位置在一起,这算是它们的起始位置。随着主库不断接收新的写操作,它在缓冲区中的写位置会逐步偏离起始位置,我们通常用偏移量来衡量这个偏移距离的大小,对主库来说,对应的偏移量就是 master_repl_offset。主库接收的新写操作越多,这个值就会越大。
同样,从库在复制完写操作命令后,它在缓冲区中的读位置也开始逐步偏移刚才的起始位置,此时,从库已复制的偏移量 slave_repl_offset 也在不断增加。正常情况下,这两个偏移量基本相等。
如下图所示:
主从库的连接恢复之后,从库首先会给主库发送 psync 命令,并把自己当前的slave_repl_offset 发给主库,主库会判断自己的 master_repl_offset 和 slave_repl_offset之间的差距。
在网络断连阶段,主库可能会收到新的写操作命令,一般来说,master_repl_offset会大于 slave_repl_offset。此时,主库只用把 master_repl_offset 和 slave_repl_offset之间的命令操作同步给从库就行
主要流程如下图所示:
注意: repl_backlog_buffer 是一个环形缓冲区,所以在缓冲区写满后,主库会继续写入,此时,就会覆盖掉之前写入的操作。如果从库的读取速度比较慢,就有可能导致从库还未读取的操作被主库新写的操作覆盖了,这会导致主从库间的数据不一致。
为了避免这个问题,我们可以调整 repl_back_size 参数,这个参数和所需的缓冲空间大小有关。缓冲空间的计算公式是:缓冲空间大小 = 主库写入命令速度 * 操作大小 - 主从库间网络传输命令速度 * 操作大小。在实际应用中,考虑到可能存在一些突发的请求压力,我们通常需要把这个缓冲空间扩大一倍,即repl_backlog_size = 缓冲空间大小 * 2,这也就是 repl_backlog_size 的最终值。
到此,我们的Redis 主从同步就结束了,你看懂了吗。
巨人的肩膀:
极客时间Redis核心技术与实战