吊打面试官之 ConcurrentHashMap 源码分析

一、为什么要使用 ConcurrentHashMap

在并发编程中使用 HashMap 可能会导致程序死循环,而是用线程安全的 HashTable 效率又非常低下,为了解决这个问题,ConcurrentHashMap 问世了。

1)线程不安全的 HashMap,在多线程环境下,使用 HashMap 进行 put 操作会引起死循环(JDK1.7),在 JDK1.8 中会导致数据被覆盖的问题。

2)效率低下的 HashTable,HashTable 使用 synchronized 来保证线程安全,在线程竞争激烈的情况下 HashTable 的效率非常低下,当一个线程访问 HashTable 的同步方法,其他线程也访问 HashTable 的同步方法,会进入阻塞或轮询状态,效率非常低。

二、ConcurrentHashMap - JDK 1.7

在 JDK 1.7 中 Java 使用了分段锁机制来实现 ConcurrentHashMap,ConcurrentHashMap在对象中保存了一个Segment数组,即将整个 Hash 表划分为多个分段;而每个 Segment 元素,即每个分段则类似于一个Hashtable;这样,在执行put操作时首先根据hash算法定位到元素属于哪个Segment,然后对该Segment加锁即可。因此,ConcurrentHashMap在多线程并发编程中可是实现多线程put操作。

结构

整个 ConcurrentHashMap 由一个个 Segment 组成,Segment 代表”部分“或”一段“的意思,所以很多地方都会将其描述为分段锁,也可以称为一个槽。简单点说就是ConcurrentHashMap 是一个 Segment 数组,Segment 通过继承 ReentrantLock 来进行加锁,所以每次需要加锁的操作锁住的是一个 segment,这样只要保证每个 Segment 是线程安全的,也就实现了全局的线程安全。

下面是ConcurrentHashMap的结构:

image-20220327102024627

Segment 的个数一旦初始化就不能改变,默认 Segment 的个数是 16 个,可以认为ConcurrentHashMap 默认支持最多 16 个线程并发。

初始化

通过 ConcurrentHashMap 的无参构造探寻 ConcurrentHashMap 的初始化流程。

public ConcurrentHashMap() {
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
}

无参构造中调用了有参构造,传入了三个参数的默认值,他们的值是:

// 默认初始化容量
static final int DEFAULT_INITIAL_CAPACITY = 16;

// 默认负载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;

// 默认并发级别
static final int DEFAULT_CONCURRENCY_LEVEL = 16;

接着看下这个有参构造函数的内部实现逻辑:

  • concurrencyLevel:并行级别、并发数、Segment 数,默认是 16,上面解释过了。
  • initialCapacity: 初始容量,这个值指的是整个 ConcurrentHashMap 的初始容量,实际操作的时候需要平均分给每个 Segment。
  • loadFactor: 负载因子,Segment 数组不可以扩容,所以这个负载因子是给每个 Segment 内部使用的。
public ConcurrentHashMap(int initialCapacity,float loadFactor, int concurrencyLevel) {
    // 参数校验
    if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) throw new IllegalArgumentException();
    // 校验并发级别大小,大于 1<<16,重置为 65536
    if (concurrencyLevel > MAX_SEGMENTS) concurrencyLevel = MAX_SEGMENTS;
    // 2的多少次方
    int sshift = 0;
    int ssize = 1;
    // 这个循环可以找到 concurrencyLevel 之上最近的 2 的次方值
    while (ssize < concurrencyLevel) {
        ++sshift;
        ssize <<= 1;
    }
    // 记录段偏移量
    this.segmentShift = 32 - sshift;
    // 记录段掩码
    this.segmentMask = ssize - 1;
    // 设置容量
    if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY;
    // c = 容量 / ssize ,默认 16 / 16 = 1,这里是计算每个 Segment 中的类似于 HashMap 的容量
    int c = initialCapacity / ssize;
    if (c * ssize < initialCapacity) ++c;
    int cap = MIN_SEGMENT_TABLE_CAPACITY;
    //Segment 中的类似于 HashMap 的容量至少是2或者2的倍数
    while (cap < c) cap <<= 1;
    // 创建 Segment 数组,并创建数组的第一个元素 segments[0]
    Segment<K,V> s0 = new Segment<K,V>(loadFactor, (int)(cap * loadFactor), (HashEntry<K,V>[])new HashEntry[cap]);
    Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
    // 往数组写入 segment[0]
    UNSAFE.putOrderedObject(ss, SBASE, s0);
    this.segments = ss;
}

总结一下在 Java 7 中 ConcurrnetHashMap 的初始化逻辑:

1)必要参数校验。

2)校验并发级别 concurrencyLevel 大小,如果大于最大值,重置为最大值,无参构造默认值是 16

3)寻找并发级别 concurrencyLevel 之上最近的 2 的幂次方值,作为初始化容量大小,默认是 16

4)记录 segmentShift 偏移量,这个值为【容量 = 2 的N次方】中的 N,默认是 32 - sshift = 28

5)记录 segmentMask,默认是 ssize - 1 = 16 -1 = 15,和 segmentShift 在 put 操作中会用到。

6)初始化 segments[0],其他位置还是 null。

Segment[i] 的默认大小为 2,负载因子是 0.75,得出初始阈值为 1.5,也就是以后插入第一个元素不会触发扩容,插入第二个会进行第一次扩容

put 过程

先看 put 的主流程:

public V put(K key, V value) {
    Segment<K,V> s;
    if (value == null) throw new NullPointerException();
    // 1. 计算 key 的 hash 值
    int hash = hash(key);
    // 2. 根据 hash 值找到 Segment 数组中的位置 j
    // hash 是 32 位,无符号右移 segmentShift(28) 位,剩下高 4 位,
    // 然后和 segmentMask(15) 做一次与操作,也就是说 j 是 hash 值的高 4 位,也就是槽的数组下标
    int j = (hash >>> segmentShift) & segmentMask;
    // 刚刚说了,初始化的时候初始化了 segment[0],但是其他位置还是 null
    // ensureSegment(j) 对 segment[j] 进行初始化
    if ((s = (Segment<K,V>) UNSAFE.getObject(segments, (j << SSHIFT) + SBASE)) == null) 
        s = ensureSegment(j);
    // 3. 插入新值到槽 s 中
    return s.put(key, hash, value, false);
}

第一层皮很简单,根据 hash 值很快就能找到相应的 Segment,之后就是 Segment 内部的 put 操作了。Segment 内部是由 数组+链表 组成的。

final V put(K key, int hash, V value, boolean onlyIfAbsent) {
    // 在往该 segment 写入前,需要先获取该 segment 的独占锁
    // 先看主流程,后面还会具体介绍这部分内容
    HashEntry<K,V> node = tryLock() ? null : scanAndLockForPut(key, hash, value);
    V oldValue;
    try {
        // 这个是 segment 内部的数组
        HashEntry<K,V>[] tab = table;
        // 再利用 hash 值,求应该放置的数组下标
        int index = (tab.length - 1) & hash;
        // first 是数组该位置处的链表的表头
        HashEntry<K,V> first = entryAt(tab, index);
        // 下面这串 for 循环虽然很长,不过也很好理解,想想该位置没有任何元素和已经存在一个链表这两种情况
        for (HashEntry<K,V> e = first;;) {
            if (e != null) {
                K k;
                if ((k = e.key) == key || (e.hash == hash && key.equals(k))) {
                    oldValue = e.value;
                    if (!onlyIfAbsent) {
                        // 覆盖旧值
                        e.value = value;
                        ++modCount;
                    }
                    break;
                }
                // 继续顺着链表走
                e = e.next;
            }
            else {
                // node 到底是不是 null,这个要看获取锁的过程,不过和这里都没有关系。
                // 如果不为 null,那就直接将它设置为链表表头;如果是null,初始化并设置为链表表头。
                if (node != null) node.setNext(first);
                else node = new HashEntry<K,V>(hash, key, value, first);
                int c = count + 1;
                // 如果超过了该 segment 的阈值,这个 segment 需要扩容
                if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                    rehash(node); // 扩容后面也会具体分析
                else
                    // 没有达到阈值,将 node 放到数组 tab 的 index 位置
                    // 其实就是将新的节点设置成原链表的表头
                    setEntryAt(tab, index, node);
                ++ modCount;
                count = c;
                oldValue = null;
                break;
            }
        }
    } finally {
        // 解锁
        unlock();
    }
    return oldValue;
}

整体流程还是比较简单的,由于有独占锁的保护,所以 segment 内部的操作并不复杂,到这里put操作就结束了。

初始化槽 ensureSegment

ConcurrentHashMap 初始化的时候会初始化第一个槽 segment[0],对于其他槽来说,在插入第一个值的时候进行初始化。这里需要考虑并发,因为很可能会有多个线程同时进来初始化同一个槽 segment[k],不过只要有一个成功了就可以。

private Segment<K,V> ensureSegment(int k) {
    final Segment<K,V>[] ss = this.segments;
    long u = (k << SSHIFT) + SBASE; // raw offset
    Segment<K,V> seg;
    if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
        // 这里看到为什么之前要初始化 segment[0] 了,
        // 使用当前 segment[0] 处的数组长度和负载因子来初始化 segment[k]
        // 为什么要用“当前”,因为 segment[0] 可能早就扩容过了
        Segment<K,V> proto = ss[0];
        int cap = proto.table.length;
        float lf = proto.loadFactor;
        int threshold = (int)(cap * lf);
        // 初始化 segment[k] 内部的数组
        HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
        // 再次检查一遍该槽是否被其他线程初始化了
        if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) { 
            Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
            // 使用 while 循环,内部用 CAS,当前线程成功设值或其他线程成功设值后,退出
            while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
                   == null) {
                if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
                    break;
            }
        }
    }
    return seg;
}

总的来说,ensureSegment(int k) 比较简单,对于并发操作使用 CAS 进行控制。

获取写入锁 scanandlockforput

前面我们看到,在往某个 segment 中 put 的时候,首先会调用 node = tryLock() ? null : scanAndLockForPut(key, hash, value),也就是说先进行一次 tryLock() 快速获取该 segment 的独占锁,如果失败,那么进入到 scanAndLockForPut 这个方法来获取锁。下面我们来具体分析这个方法中是怎么控制加锁的:

private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
    HashEntry<K,V> first = entryForHash(this, hash);
    HashEntry<K,V> e = first;
    HashEntry<K,V> node = null;
    int retries = -1; // negative while locating node
    // 循环获取锁
    while (!tryLock()) {
        HashEntry<K,V> f; // to recheck first below
        if (retries < 0) {
            if (e == null) {
                if (node == null) // speculatively create node
                    // 进到这里说明数组该位置的链表是空的,没有任何元素
                    // 当然,进到这里的另一个原因是 tryLock() 失败,所以该槽存在并发,不一定是该位置
                    node = new HashEntry<K,V>(hash, key, value, null);
                retries = 0;
            }
            else if (key.equals(e.key)) retries = 0;
            else
                // 顺着链表往下走
                e = e.next;
        }
        // 重试次数如果超过 MAX_SCAN_RETRIES(单核1多核64),那么不抢了,进入到阻塞队列等待锁
        // lock() 是阻塞方法,直到获取锁后返回
        else if (++retries > MAX_SCAN_RETRIES) {
            lock();
            break;
        }
        else if ((retries & 1) == 0 &&
                 // 这个时候是有大问题了,那就是有新的元素进到了链表,成为了新的表头
                 // 所以这边的策略是,相当于重新走一遍这个 scanAndLockForPut 方法
                 (f = entryForHash(this, hash)) != first) {
            e = first = f; // re-traverse if entry changed
            retries = -1;
        }
    }
    return node;
}

这个方法有两个出口,一个是 tryLock() 成功了,循环终止,另一个就是重试次数超过了 MAX_SCAN_RETRIES,进到 lock() 方法,此方法会阻塞等待,直到成功拿到独占锁。这个方法就是看似复杂,但是其实就是做了一件事,那就是获取该 segment 的独占锁,如果需要的话顺便实例化了一下 node。

扩容 rehash

segment 数组不能扩容,扩容是 segment 数组某个位置内部的数组 HashEntry<K,V>[] 进行扩容,扩容后,容量为原来的 2 倍。在 put 元素的时候,如果判断该值的插入会导致该 segment 的元素个数超过阈值,那么先进行扩容,再插值。该方法不需要考虑并发,因为到这里的时候,是持有该 segment 的独占锁的。

// 方法参数上的 node 是这次扩容后,需要添加到新的数组中的数据。
private void rehash(HashEntry<K,V> node) {
    HashEntry<K,V>[] oldTable = table;
    int oldCapacity = oldTable.length;
    // 2 倍
    int newCapacity = oldCapacity << 1;
    threshold = (int)(newCapacity * loadFactor);
    // 创建新数组
    HashEntry<K,V>[] newTable = (HashEntry<K,V>[]) new HashEntry[newCapacity];
    // 新的掩码,如从 16 扩容到 32,那么 sizeMask 为 31,对应二进制 ‘000...00011111’
    int sizeMask = newCapacity - 1;
    // 遍历原数组,老套路,将原数组位置 i 处的链表拆分到新数组位置 i 和 i+oldCap 两个位置
    for (int i = 0; i < oldCapacity ; i++) {
        // e 是链表的第一个元素
        HashEntry<K,V> e = oldTable[i];
        if (e != null) {
            HashEntry<K,V> next = e.next;
            // 计算应该放置在新数组中的位置,
            // 假设原数组长度为 16,e 在 oldTable[3] 处,那么 idx 只可能是 3 或者是 3 + 16 = 19
            int idx = e.hash & sizeMask;
            // 该位置处只有一个元素,那比较好办
            if (next == null) newTable[idx] = e;
            else { // Reuse consecutive sequence at same slot
                // e 是链表表头
                HashEntry<K,V> lastRun = e;
                // idx 是当前链表的头结点 e 的新位置
                int lastIdx = idx;
                // 下面这个 for 循环会找到一个 lastRun 节点,这个节点之后的所有元素是将要放到一起的
                for (HashEntry<K,V> last = next;
                    last != null;
                    last = last.next) {
                    int k = last.hash & sizeMask;
                    if (k != lastIdx) {
                        lastIdx = k;
                        lastRun = last;
                    }
                }
                // 将 lastRun 及其之后的所有节点组成的这个链表放到 lastIdx 这个位置
                newTable[lastIdx] = lastRun;
                // 下面的操作是处理 lastRun 之前的节点,
                // 这些节点可能分配在另一个链表中,也可能分配到上面的那个链表中
                for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
                    V v = p.value;
                    int h = p.hash;
                    int k = h & sizeMask;
                    HashEntry<K,V> n = newTable[k];
                    newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
                }
            }
        }
    }
    // 将新来的 node 放到新数组中刚刚的两个链表之一的头部
    int nodeIndex = node.hash & sizeMask; // add the new node
    node.setNext(newTable[nodeIndex]);
    newTable[nodeIndex] = node;
    table = newTable;
}

get 过程

1)计算 hash 值,找到 segment 数组中的具体位置,或我们前面用的“槽”。

2)槽中也是一个数组,根据 hash 找到数组中具体的位置。

3)顺着链表进行查找即可。

public V get(Object key) {
    Segment<K,V> s; // manually integrate access methods to reduce overhead
    HashEntry<K,V>[] tab;
    // 1. hash 值
    int h = hash(key);
    long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
    // 2. 根据 hash 找到对应的 segment
    if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
        (tab = s.table) != null) {
        // 3. 找到segment 内部数组相应位置的链表,遍历
        for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                 (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
             e != null; e = e.next) {
            K k;
            if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                return e.value;
        }
    }
    return null;
}

添加节点的操作 put 和删除节点的操作 remove 都是要加 segment 上的独占锁的,所以它们之间自然不会有问题,我们需要考虑的问题就是 get 的时候在同一个 segment 中发生了 put 或 remove 操作。

put 操作的线程安全性:

1)初始化槽,这个我们之前就说过了,使用了 CAS 来初始化 Segment 中的数组。

2)添加节点到链表的操作是插入到表头的,所以,如果这个时候 get 操作在链表遍历的过程已经到了中间,是不会影响的。当然,另一个并发问题就是 get 操作在 put 之后,需要保证刚刚插入表头的节点被读取,这个依赖于 setEntryAt 方法中使用的 UNSAFE.putOrderedObject。

3)扩容,扩容是新创建了数组,然后进行迁移数据,最后面将 newTable 设置给属性 table。所以,如果 get 操作此时也在进行,那么也没关系,如果 get 先行,那么就是在旧的 table 上做查询操作;而 put 先行,那么 put 操作的可见性保证就是 table 使用了 volatile 关键字。

remove 操作的线程安全性

1)get 操作需要遍历链表,但是 remove 操作会"破坏"链表。

2)如果 remove 破坏的节点 get 操作已经过去了,那么这里不存在任何问题。

3)如果 remove 先破坏了一个节点,分两种情况考虑。 1、如果此节点是头结点,那么需要将头结点的 next 设置为数组该位置的元素,table 虽然使用了 volatile 修饰,但是 volatile 并不能提供数组内部操作的可见性保证,所以源码中使用了 UNSAFE 来操作数组,请看方法 setEntryAt。2、如果要删除的节点不是头结点,它会将要删除节点的后继节点接到前驱节点中,这里的并发保证就是 next 属性是 volatile 的。

三、ConcurrentHashMap - JDK 1.8

结构

在JDK1.7之前,ConcurrentHashMap是通过分段锁机制来实现的,所以其最大并发度受Segment的个数限制。因此,在JDK1.8中,ConcurrentHashMap的实现原理摒弃了这种设计,而是选择了与HashMap类似的数组+链表+红黑树的方式实现,而加锁则采用CAS和synchronized实现。

image-20220327102040114

结构上和 Java8 的 HashMap 基本上一样,不过它要保证线程安全性,所以在源码上确实要复杂。

初始化

// 这构造函数里,什么都不干
public ConcurrentHashMap() {
}
public ConcurrentHashMap(int initialCapacity) {
    if (initialCapacity < 0) throw new IllegalArgumentException();
    int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
               MAXIMUM_CAPACITY :
               tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
    this.sizeCtl = cap;
}

通过提供初始容量,计算了 sizeCtl,sizeCtl = 【 (1.5 * initialCapacity + 1),然后向上取最近的 2 的 n 次方】

put 过程

直接上源码:

public V put(K key, V value) {
    return putVal(key, value, false);
}
final V putVal(K key, V value, boolean onlyIfAbsent) {
    if (key == null || value == null) throw new NullPointerException();
    // 得到 hash 值
    int hash = spread(key.hashCode());
    // 用于记录相应链表的长度
    int binCount = 0;
    for (Node<K,V>[] tab = table;;) {
        Node<K,V> f; int n, i, fh;
        // 如果数组"空",进行数组初始化
        if (tab == null || (n = tab.length) == 0)
            // 初始化数组,后面会详细介绍
            tab = initTable();
        // 找该 hash 值对应的数组下标,得到第一个节点 f
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            // 如果数组该位置为空,
            // 用一次 CAS 操作将这个新值放入其中即可,这个 put 操作差不多就结束了,可以拉到最后面了
            // 如果 CAS 失败,那就是有并发操作,进到下一个循环就好了
            if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null)))
                break;                 
        }
        // hash 居然可以等于 MOVED,这个需要到后面才能看明白,不过从名字上也能猜到,肯定是因为在扩容
        else if ((fh = f.hash) == MOVED)
            // 帮助数据迁移,这个等到看完数据迁移部分的介绍后,再理解这个就很简单了
            tab = helpTransfer(tab, f);
        else { // 到这里就是说,f 是该位置的头结点,而且不为空
            V oldVal = null;
            // 获取数组该位置的头结点的监视器锁
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    if (fh >= 0) { // 头结点的 hash 值大于 0,说明是链表
                        // 用于累加,记录链表的长度
                        binCount = 1;
                        // 遍历链表
                        for (Node<K,V> e = f;; ++binCount) {
                            K ek;
                            // 如果发现了"相等"的 key,判断是否要进行值覆盖,然后也就可以 break 了
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) {
                                oldVal = e.val;
                                if (!onlyIfAbsent)
                                    e.val = value;
                                break;
                            }
                            // 到了链表的最末端,将这个新值放到链表的最后面
                            Node<K,V> pred = e;
                            if ((e = e.next) == null) {
                                pred.next = new Node<K,V>(hash, key,
                                                          value, null);
                                break;
                            }
                        }
                    }
                    else if (f instanceof TreeBin) { // 红黑树
                        Node<K,V> p;
                        binCount = 2;
                        // 调用红黑树的插值方法插入新节点
                        if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, value)) != null) {
                            oldVal = p.val;
                            if (!onlyIfAbsent) p.val = value;
                        }
                    }
                }
            }
            if (binCount != 0) {
                // 判断是否要将链表转换为红黑树,临界值和 HashMap 一样,也是 8
                if (binCount >= TREEIFY_THRESHOLD)
                    // 这个方法和 HashMap 中稍微有一点点不同,那就是它不是一定会进行红黑树转换,
                    // 如果当前数组的长度小于 64,那么会选择进行数组扩容,而不是转换为红黑树
                    // 具体源码我们就不看了,扩容部分后面说
                    treeifyBin(tab, i);
                if (oldVal != null)
                    return oldVal;
                break;
            }
        }
    }
    addCount(1L, binCount);
    return null;
}

初始化数组 initTable

这个比较简单,主要就是初始化一个合适大小的数组,然后会设置 sizeCtl。初始化方法中的并发问题是通过对 sizeCtl 进行一个 CAS 操作来控制的。

private final Node<K,V>[] initTable() {
    Node<K,V>[] tab; int sc;
    while ((tab = table) == null || tab.length == 0) {
        // 初始化的"功劳"被其他线程"抢去"了
        if ((sc = sizeCtl) < 0) Thread.yield(); 
        // CAS 一下,将 sizeCtl 设置为 -1,代表抢到了锁
        else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
            try {
                if ((tab = table) == null || tab.length == 0) {
                    // DEFAULT_CAPACITY 默认初始容量是 16
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    // 初始化数组,长度为 16 或初始化时提供的长度
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                    // 将这个数组赋值给 table,table 是 volatile 的
                    table = tab = nt;
                    // 如果 n 为 16 的话,那么这里 sc = 12
                    // 其实就是 0.75 * n
                    sc = n - (n >>> 2);
                }
            } finally {
                // 设置 sizeCtl 为 sc,我们就当是 12 吧
                sizeCtl = sc;
            }
            break;
        }
    }
    return tab;
}

链表转红黑树 treeifyBin

前面我们在 put 源码分析也说过,treeifyBin 不一定就会进行红黑树转换,也可能是仅仅做数组扩容。

private final void treeifyBin(Node<K,V>[] tab, int index) {
    Node<K,V> b; int n, sc;
    if (tab != null) {
        // MIN_TREEIFY_CAPACITY 为 64
        // 所以,如果数组长度小于 64 的时候,其实也就是 32 或者 16 或者更小的时候,会进行数组扩容
        if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
            // 后面我们再详细分析这个方法
            tryPresize(n << 1);
        // b 是头结点
        else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
            // 加锁
            synchronized (b) {
                if (tabAt(tab, index) == b) {
                    // 下面就是遍历链表,建立一颗红黑树
                    TreeNode<K,V> hd = null, tl = null;
                    for (Node<K,V> e = b; e != null; e = e.next) {
                        TreeNode<K,V> p = new TreeNode<K,V>(e.hash, e.key, e.val, null, null);
                        if ((p.prev = tl) == null) hd = p;
                        else tl.next = p;
                        tl = p;
                    }
                    // 将红黑树设置到数组相应位置中
                    setTabAt(tab, index, new TreeBin<K,V>(hd));
                }
            }
        }
    }
}

扩容 tryPresize

这里的扩容也是做翻倍扩容的,扩容后数组容量为原来的 2 倍。

// 首先要说明的是,方法参数 size 传进来的时候就已经翻了倍了
private final void tryPresize(int size) {
    // c: size 的 1.5 倍,再加 1,再往上取最近的 2 的 n 次方。
    int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
        tableSizeFor(size + (size >>> 1) + 1);
    int sc;
    while ((sc = sizeCtl) >= 0) {
        Node<K,V>[] tab = table; int n;
        // 这个 if 分支和之前说的初始化数组的代码基本上是一样的,在这里,我们可以不用管这块代码
        if (tab == null || (n = tab.length) == 0) {
            n = (sc > c) ? sc : c;
            if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                try {
                    if (table == tab) {
                        @SuppressWarnings("unchecked")
                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                        table = nt;
                        sc = n - (n >>> 2); // 0.75 * n
                    }
                } finally {
                    sizeCtl = sc;
                }
            }
        }
        else if (c <= sc || n >= MAXIMUM_CAPACITY) break;
        else if (tab == table) {
            // 我没看懂 rs 的真正含义是什么,不过也关系不大
            int rs = resizeStamp(n);
            if (sc < 0) {
                Node<K,V>[] nt;
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                    sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                    transferIndex <= 0)
                    break;
                // 2. 用 CAS 将 sizeCtl 加 1,然后执行 transfer 方法
                // 此时 nextTab 不为 null
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                    transfer(tab, nt);
            }
            // 1. 将 sizeCtl 设置为 (rs << RESIZE_STAMP_SHIFT) + 2)
            // 我是没看懂这个值真正的意义是什么? 不过可以计算出来的是,结果是一个比较大的负数
            // 调用 transfer 方法,此时 nextTab 参数为 null
            else if (U.compareAndSwapInt(this, SIZECTL, sc, (rs << RESIZE_STAMP_SHIFT) + 2))
                transfer(tab, null);
        }
    }
}

这个方法的核心在于 sizeCtl 值的操作,首先将其设置为一个负数,然后执行 transfer(tab, null),再下一个循环将 sizeCtl 加 1,并执行 transfer(tab, nt),之后可能是继续 sizeCtl 加 1,并执行 transfer(tab, nt)。

所以,可能的操作就是执行 1 次 transfer(tab, null) + 多次 transfer(tab, nt),这里怎么结束循环的需要看完 transfer 源码才清楚。

数据迁移 transfer

将原来的 tab 数组的元素迁移到新的 nextTab 数组中。

private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
    int n = tab.length, stride;
    // stride 在单核下直接等于 n,多核模式下为 (n>>>3)/NCPU,最小值是 16
    // stride 可以理解为”步长“,有 n 个位置是需要进行迁移的,
    // 将这 n 个任务分为多个任务包,每个任务包有 stride 个任务
    if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
        stride = MIN_TRANSFER_STRIDE; 
    // 如果 nextTab 为 null,先进行一次初始化
    // 前面我们说了,外围会保证第一个发起迁移的线程调用此方法时,参数 nextTab 为 null
    // 之后参与迁移的线程调用此方法时,nextTab 不会为 null
    if (nextTab == null) {
        try {
            // 容量翻倍
            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
            nextTab = nt;
        } catch (Throwable ex) {    
            sizeCtl = Integer.MAX_VALUE;
            return;
        }
        // nextTable 是 ConcurrentHashMap 中的属性
        nextTable = nextTab;
        // transferIndex 也是 ConcurrentHashMap 的属性,用于控制迁移的位置
        transferIndex = n;
    }
    int nextn = nextTab.length;
    // ForwardingNode 翻译过来就是正在被迁移的 Node
    // 这个构造方法会生成一个Node,key、value 和 next 都为 null,关键是 hash 为 MOVED
    // 后面我们会看到,原数组中位置 i 处的节点完成迁移工作后,
    // 就会将位置 i 处设置为这个 ForwardingNode,用来告诉其他线程该位置已经处理过了
    // 所以它其实相当于是一个标志。
    ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
    // advance 指的是做完了一个位置的迁移工作,可以准备做下一个位置的了
    boolean advance = true;
    boolean finishing = false; // to ensure sweep before committing nextTab
    // 下面这个 for 循环,最难理解的在前面,而要看懂它们,应该先看懂后面的,然后再倒回来看
    // i 是位置索引,bound 是边界,注意是从后往前
    for (int i = 0, bound = 0;;) {
        Node<K,V> f; int fh;
        // 下面这个 while 真的是不好理解
        // advance 为 true 表示可以进行下一个位置的迁移了
        // 简单理解结局: i 指向了 transferIndex,bound 指向了 transferIndex-stride
        while (advance) {
            int nextIndex, nextBound;
            if (--i >= bound || finishing) advance = false;
            // 将 transferIndex 值赋给 nextIndex
            // 这里 transferIndex 一旦小于等于 0,说明原数组的所有位置都有相应的线程去处理了
            else if ((nextIndex = transferIndex) <= 0) {
                i = -1;
                advance = false;
            }
            else if (U.compareAndSwapInt
                     (this, TRANSFERINDEX, nextIndex,
                      nextBound = (nextIndex > stride ?
                                   nextIndex - stride : 0))) {
                // 看括号中的代码,nextBound 是这次迁移任务的边界,注意,是从后往前
                bound = nextBound;
                i = nextIndex - 1;
                advance = false;
            }
        }
        if (i < 0 || i >= n || i + n >= nextn) {
            int sc;
            if (finishing) {
                // 所有的迁移操作已经完成
                nextTable = null;
                // 将新的 nextTab 赋值给 table 属性,完成迁移
                table = nextTab;
                // 重新计算 sizeCtl: n 是原数组长度,所以 sizeCtl 得出的值将是新数组长度的 0.75 倍
                sizeCtl = (n << 1) - (n >>> 1);
                return;
            }
            // 之前我们说过,sizeCtl 在迁移前会设置为 (rs << RESIZE_STAMP_SHIFT) + 2
            // 然后,每有一个线程参与迁移就会将 sizeCtl 加 1,
            // 这里使用 CAS 操作对 sizeCtl 进行减 1,代表做完了属于自己的任务
            if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                // 任务结束,方法退出
                if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT) return;
                // 到这里,说明 (sc - 2) == resizeStamp(n) << RESIZE_STAMP_SHIFT,
                // 也就是说,所有的迁移任务都做完了,也就会进入到上面的 if(finishing){} 分支了
                finishing = advance = true;
                i = n; // recheck before commit
            }
        }
        // 如果位置 i 处是空的,没有任何节点,那么放入刚刚初始化的 ForwardingNode ”空节点“
        else if ((f = tabAt(tab, i)) == null) advance = casTabAt(tab, i, null, fwd);
        // 该位置处是一个 ForwardingNode,代表该位置已经迁移过了
        else if ((fh = f.hash) == MOVED) advance = true; // already processed
        else {
            // 对数组该位置处的结点加锁,开始处理数组该位置处的迁移工作
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    Node<K,V> ln, hn;
                    // 头结点的 hash 大于 0,说明是链表的 Node 节点
                    if (fh >= 0) {
                        // 下面这一块和 Java7 中的 ConcurrentHashMap 迁移是差不多的,
                        // 需要将链表一分为二,
                        // 找到原链表中的 lastRun,然后 lastRun 及其之后的节点是一起进行迁移的
                        // lastRun 之前的节点需要进行克隆,然后分到两个链表中
                        int runBit = fh & n;
                        Node<K,V> lastRun = f;
                        for (Node<K,V> p = f.next; p != null; p = p.next) {
                            int b = p.hash & n;
                            if (b != runBit) {
                                runBit = b;
                                lastRun = p;
                            }
                        }
                        if (runBit == 0) {
                            ln = lastRun;
                            hn = null;
                        }
                        else {
                            hn = lastRun;
                            ln = null;
                        }
                        for (Node<K,V> p = f; p != lastRun; p = p.next) {
                            int ph = p.hash; K pk = p.key; V pv = p.val;
                            if ((ph & n) == 0) ln = new Node<K,V>(ph, pk, pv, ln);
                            else hn = new Node<K,V>(ph, pk, pv, hn);
                        }
                        // 其中的一个链表放在新数组的位置 i
                        setTabAt(nextTab, i, ln);
                        // 另一个链表放在新数组的位置 i+n
                        setTabAt(nextTab, i + n, hn);
                        // 将原数组该位置处设置为 fwd,代表该位置已经处理完毕,
                        // 其他线程一旦看到该位置的 hash 值为 MOVED,就不会进行迁移了
                        setTabAt(tab, i, fwd);
                        // advance 设置为 true,代表该位置已经迁移完毕
                        advance = true;
                    }
                    else if (f instanceof TreeBin) {
                        // 红黑树的迁移
                        TreeBin<K,V> t = (TreeBin<K,V>)f;
                        TreeNode<K,V> lo = null, loTail = null;
                        TreeNode<K,V> hi = null, hiTail = null;
                        int lc = 0, hc = 0;
                        for (Node<K,V> e = t.first; e != null; e = e.next) {
                            int h = e.hash;
                            TreeNode<K,V> p = new TreeNode<K,V>(h, e.key, e.val, null, null);
                            if ((h & n) == 0) {
                                if ((p.prev = loTail) == null) lo = p;
                                else loTail.next = p;
                                loTail = p;
                                ++lc;
                            }
                            else {
                                if ((p.prev = hiTail) == null) hi = p;
                                else hiTail.next = p;
                                hiTail = p;
                                ++hc;
                            }
                        }
                        // 如果一分为二后,节点数少于 8,那么将红黑树转换回链表
                        ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                            (hc != 0) ? new TreeBin<K,V>(lo) : t;
                        hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                            (lc != 0) ? new TreeBin<K,V>(hi) : t;
                        // 将 ln 放置在新数组的位置 i
                        setTabAt(nextTab, i, ln);
                        // 将 hn 放置在新数组的位置 i+n
                        setTabAt(nextTab, i + n, hn);
                        // 将原数组该位置处设置为 fwd,代表该位置已经处理完毕,
                        //    其他线程一旦看到该位置的 hash 值为 MOVED,就不会进行迁移了
                        setTabAt(tab, i, fwd);
                        // advance 设置为 true,代表该位置已经迁移完毕
                        advance = true;
                    }
                }
            }
        }
    }
}

get 过程

1)计算 hash 值。

2)根据 hash 值找到数组对应位置: (n - 1) & h。

3)根据该位置处结点性质进行相应查找。

  • 如果该位置为 null,那么直接返回 null 就可以了。
  • 如果该位置处的节点刚好就是我们需要的,返回该节点的值即可。
  • 如果该位置节点的 hash 值小于 0,说明正在扩容,或者是红黑树,后面我们再介绍 find 方法。
  • 如果以上 3 条都不满足,那就是链表,进行遍历比对即可。

四、总结

HashTable : 使用了synchronized关键字对put等操作进行加锁

ConcurrentHashMap JDK1.7: 使用分段锁机制实现

ConcurrentHashMap JDK1.8: 则使用数组+链表+红黑树数据结构和CAS原子操作实现

巨人的肩膀:

https://www.pdai.tech/md/java/thread/java-thread-x-juc-collection-ConcurrentHashMap.html#juc集合-concurrenthashmap详解

https://snailclimb.gitee.io/javaguide/#/docs/java/collection/ConcurrentHashMap源码+底层数据结构分析?id=_1-concurrenthashmap-17

posted @ 2021-10-29 21:50  Maple~  阅读(157)  评论(0编辑  收藏  举报