SPOJ 10628. Count on a tree (树上第k大,LCA+主席树)
10628. Count on a treeProblem code: COT |
You are given a tree with N nodes.The tree nodes are numbered from 1 to N.Each node has an integer weight.
We will ask you to perform the following operation:
- u v k : ask for the kth minimum weight on the path from node u to node v
Input
In the first line there are two integers N and M.(N,M<=100000)
In the second line there are N integers.The ith integer denotes the weight of the ith node.
In the next N-1 lines,each line contains two integers u v,which describes an edge (u,v).
In the next M lines,each line contains three integers u v k,which means an operation asking for the kth minimum weight on the path from node u to node v.
Output
For each operation,print its result.
Example
Input:
8 5
8 5 105 2 9 3 8 5 7 7 1 2 1 3 1 4 3 5 3 6 3 7 4 8
2 5 1
2 5 2
2 5 3
2 5 4
7 8 2
Output: 2
8
9
105
7
在树上建立主席树。
然后求LCA
1 /* *********************************************** 2 Author :kuangbin 3 Created Time :2013-9-5 10:31:57 4 File Name :F:\2013ACM练习\专题学习\主席树\SPOJ_COT.cpp 5 ************************************************ */ 6 7 #include <stdio.h> 8 #include <string.h> 9 #include <iostream> 10 #include <algorithm> 11 #include <vector> 12 #include <queue> 13 #include <set> 14 #include <map> 15 #include <string> 16 #include <math.h> 17 #include <stdlib.h> 18 #include <time.h> 19 using namespace std; 20 21 //主席树部分 *****************8 22 const int MAXN = 200010; 23 const int M = MAXN * 40; 24 int n,q,m,TOT; 25 int a[MAXN], t[MAXN]; 26 int T[M], lson[M], rson[M], c[M]; 27 28 void Init_hash() 29 { 30 for(int i = 1; i <= n;i++) 31 t[i] = a[i]; 32 sort(t+1,t+1+n); 33 m = unique(t+1,t+n+1)-t-1; 34 } 35 int build(int l,int r) 36 { 37 int root = TOT++; 38 c[root] = 0; 39 if(l != r) 40 { 41 int mid = (l+r)>>1; 42 lson[root] = build(l,mid); 43 rson[root] = build(mid+1,r); 44 } 45 return root; 46 } 47 int hash(int x) 48 { 49 return lower_bound(t+1,t+1+m,x) - t; 50 } 51 int update(int root,int pos,int val) 52 { 53 int newroot = TOT++, tmp = newroot; 54 c[newroot] = c[root] + val; 55 int l = 1, r = m; 56 while( l < r) 57 { 58 int mid = (l+r)>>1; 59 if(pos <= mid) 60 { 61 lson[newroot] = TOT++; rson[newroot] = rson[root]; 62 newroot = lson[newroot]; root = lson[root]; 63 r = mid; 64 } 65 else 66 { 67 rson[newroot] = TOT++; lson[newroot] = lson[root]; 68 newroot = rson[newroot]; root = rson[root]; 69 l = mid+1; 70 } 71 c[newroot] = c[root] + val; 72 } 73 return tmp; 74 } 75 int query(int left_root,int right_root,int LCA,int k) 76 { 77 int lca_root = T[LCA]; 78 int pos = hash(a[LCA]); 79 int l = 1, r = m; 80 while(l < r) 81 { 82 int mid = (l+r)>>1; 83 int tmp = c[lson[left_root]] + c[lson[right_root]] - 2*c[lson[lca_root]] + (pos >= l && pos <= mid); 84 if(tmp >= k) 85 { 86 left_root = lson[left_root]; 87 right_root = lson[right_root]; 88 lca_root = lson[lca_root]; 89 r = mid; 90 } 91 else 92 { 93 k -= tmp; 94 left_root = rson[left_root]; 95 right_root = rson[right_root]; 96 lca_root = rson[lca_root]; 97 l = mid + 1; 98 } 99 } 100 return l; 101 } 102 103 //LCA部分 104 int rmq[2*MAXN];//rmq数组,就是欧拉序列对应的深度序列 105 struct ST 106 { 107 int mm[2*MAXN]; 108 int dp[2*MAXN][20];//最小值对应的下标 109 void init(int n) 110 { 111 mm[0] = -1; 112 for(int i = 1;i <= n;i++) 113 { 114 mm[i] = ((i&(i-1)) == 0)?mm[i-1]+1:mm[i-1]; 115 dp[i][0] = i; 116 } 117 for(int j = 1; j <= mm[n];j++) 118 for(int i = 1; i + (1<<j) - 1 <= n; i++) 119 dp[i][j] = rmq[dp[i][j-1]] < rmq[dp[i+(1<<(j-1))][j-1]]?dp[i][j-1]:dp[i+(1<<(j-1))][j-1]; 120 } 121 int query(int a,int b)//查询[a,b]之间最小值的下标 122 { 123 if(a > b)swap(a,b); 124 int k = mm[b-a+1]; 125 return rmq[dp[a][k]] <= rmq[dp[b-(1<<k)+1][k]]?dp[a][k]:dp[b-(1<<k)+1][k]; 126 } 127 }; 128 //边的结构体定义 129 struct Edge 130 { 131 int to,next; 132 }; 133 Edge edge[MAXN*2]; 134 int tot,head[MAXN]; 135 136 int F[MAXN*2];//欧拉序列,就是dfs遍历的顺序,长度为2*n-1,下标从1开始 137 int P[MAXN];//P[i]表示点i在F中第一次出现的位置 138 int cnt; 139 140 ST st; 141 void init() 142 { 143 tot = 0; 144 memset(head,-1,sizeof(head)); 145 } 146 void addedge(int u,int v)//加边,无向边需要加两次 147 { 148 edge[tot].to = v; 149 edge[tot].next = head[u]; 150 head[u] = tot++; 151 } 152 void dfs(int u,int pre,int dep) 153 { 154 F[++cnt] = u; 155 rmq[cnt] = dep; 156 P[u] = cnt; 157 for(int i = head[u];i != -1;i = edge[i].next) 158 { 159 int v = edge[i].to; 160 if(v == pre)continue; 161 dfs(v,u,dep+1); 162 F[++cnt] = u; 163 rmq[cnt] = dep; 164 } 165 } 166 void LCA_init(int root,int node_num)//查询LCA前的初始化 167 { 168 cnt = 0; 169 dfs(root,root,0); 170 st.init(2*node_num-1); 171 } 172 int query_lca(int u,int v)//查询u,v的lca编号 173 { 174 return F[st.query(P[u],P[v])]; 175 } 176 177 void dfs_build(int u,int pre) 178 { 179 int pos = hash(a[u]); 180 T[u] = update(T[pre],pos,1); 181 for(int i = head[u]; i != -1;i = edge[i].next) 182 { 183 int v = edge[i].to; 184 if(v == pre)continue; 185 dfs_build(v,u); 186 } 187 } 188 int main() 189 { 190 //freopen("in.txt","r",stdin); 191 //freopen("out.txt","w",stdout); 192 while(scanf("%d%d",&n,&q) == 2) 193 { 194 for(int i = 1;i <= n;i++) 195 scanf("%d",&a[i]); 196 Init_hash(); 197 init(); 198 TOT = 0; 199 int u,v; 200 for(int i = 1;i < n;i++) 201 { 202 scanf("%d%d",&u,&v); 203 addedge(u,v); 204 addedge(v,u); 205 } 206 LCA_init(1,n); 207 T[n+1] = build(1,m); 208 dfs_build(1,n+1); 209 int k; 210 while(q--) 211 { 212 scanf("%d%d%d",&u,&v,&k); 213 printf("%d\n",t[query(T[u],T[v],query_lca(u,v),k)]); 214 } 215 return 0; 216 } 217 return 0; 218 }
人一我百!人十我万!永不放弃~~~怀着自信的心,去追逐梦想