HDU 3473 Minimum Sum(划分树,求中位数,小于中位数的和与大于中位数的和)
Minimum Sum
Time Limit: 16000/8000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1533 Accepted Submission(s): 345
Problem Description
You are given N positive integers, denoted as x0, x1 ... xN-1. Then give you some intervals [l, r]. For each interval, you need to find a number x to make as small as possible!
Input
The first line is an integer T (T <= 10), indicating the number of test cases. For each test case, an integer N (1 <= N <= 100,000) comes first. Then comes N positive integers x (1 <= x <= 1,000, 000,000) in the next line. Finally, comes an integer Q (1 <= Q <= 100,000), indicting there are Q queries. Each query consists of two integers l, r (0 <= l <= r < N), meaning the interval you should deal with.
Output
For the k-th test case, first output “Case #k:” in a separate line. Then output Q lines, each line is the minimum value of . Output a blank line after every test case.
Sample Input
2 5 3 6 2 2 4 2 1 4 0 2 2 7 7 2 0 1 1 1
Sample Output
Case #1: 6 4 Case #2: 0 0
Author
standy
Source
Recommend
zhengfeng
这题就是划分树。
很容易知道当x为中位数时,题目中的式子最小。
增加个sum[i][j]来记录第i层1-j中数的和。
然后求比中位数大的数的和-比中位数小的数的和时,要注意,具体看代码。
/* HDU 3473 Minimum Sum AC G+++ 546ms 29000K */ #include<stdio.h> #include<string.h> #include<iostream> #include<algorithm> using namespace std; const int MAXN=200010; int tree[20][MAXN]; int sorted[MAXN]; int toleft[20][MAXN]; long long sum[20][MAXN]; void build(int l,int r,int dep) { if(l==r) { sum[dep][l]=tree[dep][l]; return; } int mid=(l+r)>>1; int same=mid-l+1;//same表示等于中间值且到左边的数的个数 for(int i=l;i<=r;i++) { if(tree[dep][i]<sorted[mid]) same--; sum[dep][i]=tree[dep][i]; if(i>l)sum[dep][i]+=sum[dep][i-1]; } int lpos=l; int rpos=mid+1; for(int i=l;i<=r;i++) { if(tree[dep][i]<sorted[mid])//去左边 { tree[dep+1][lpos++]=tree[dep][i]; } else if(tree[dep][i]==sorted[mid]&&same>0)//去左边 { tree[dep+1][lpos++]=tree[dep][i]; same--; } else//去右边 tree[dep+1][rpos++]=tree[dep][i]; toleft[dep][i]=toleft[dep][l-1]+lpos-l;//从1到i放左边的个数 } build(l,mid,dep+1);//递归建树 build(mid+1,r,dep+1); } long long ans; int query(int L,int R,int l,int r,int dep,int k) { if(l==r)return tree[dep][l]; int mid=(L+R)>>1; int cnt=toleft[dep][r]-toleft[dep][l-1]; int ss=toleft[dep][l-1]-toleft[dep][L-1]; int ee=l-L-ss; int s=toleft[dep][r]-toleft[dep][l-1]; int e=r-l+1-s; if(cnt>=k) { if(e>0) { if(ee>0)ans+=sum[dep+1][mid+e+ee]-sum[dep+1][mid+ee]; else ans+=sum[dep+1][mid+e]; } //L+查询区间前去左边的数的个数 int newl=L+toleft[dep][l-1]-toleft[dep][L-1]; //左端点+查询区间会分入左边的数的个数 int newr=newl+cnt-1; return query(L,mid,newl,newr,dep+1,k);//注意 } else { if(s>0) { if(ss>0)ans-=sum[dep+1][L+ss+s-1]-sum[dep+1][L+ss-1]; else ans-=sum[dep+1][L+s-1]; } //r+区间后分入左边的数的个数 int newr=r+toleft[dep][R]-toleft[dep][r]; //右端点减去区间分入右边的数的个数 int newl=newr-(r-l-cnt); return query(mid+1,R,newl,newr,dep+1,k-cnt);//注意 } } int main() { //freopen("in.txt","r",stdin); // freopen("out.txt","w",stdout); int T; int n,m; scanf("%d",&T); int l,r; int iCase=0; while(T--) { iCase++; scanf("%d",&n); for(int i=1;i<=n;i++) { scanf("%d",&tree[0][i]); sorted[i]=tree[0][i]; } sort(sorted+1,sorted+1+n); build(1,n,0); printf("Case #%d:\n",iCase); scanf("%d",&m); while(m--) { scanf("%d%d",&l,&r); l++; r++; ans=0; int tt=query(1,n,l,r,0,(r-l)/2+1); if((r-l+1)%2==0) { ans-=tt; } printf("%I64d\n",ans); } printf("\n"); } return 0; }
人一我百!人十我万!永不放弃~~~怀着自信的心,去追逐梦想